精英家教网 > 高中数学 > 题目详情
椭圆上一点M到焦点的距离为2,的中点,则等于(   )
A.2B.C.D.
B

试题分析:由椭圆的定义可得=10-2=8,因为的中点,所以ON是三角形的中位线,故的一半4,选B。
点评:简单题,利用椭圆的定义可得,由三角形中位线定理的一半。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)椭圆的左、右焦点分别为,焦距为2,,过作垂直于椭圆长轴的弦长为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)若过的直线l交椭圆于两点.并判断是否存在直线l使得的夹角为钝角,若存在,求出l的斜率k的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设平面区域D是由双曲线的两条渐近线和抛物线y2 ="-8x" 的准线所围成的三角形(含边界与内部).若点(x,y) ∈ D,则x+ y的最小值为
A.-1B.0C.1D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

中,,给出满足的条件,就能得到动点的轨迹方程,下表给出了一些条件及方程:
条件
方程
① 周长为10

② 面积为10

③ 中,

则满足条件①、②、③的轨迹方程分别为________(用代号填入) 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,其中左焦点(-2,0).
(1) 求椭圆C的方程;
(2) 若直线y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过抛物线的焦点的直线与抛物线交于A、B两点,抛物线准线与x轴交于C点,若,则|AF|-|BF|的值为(      )
A.                 B.                 C.               D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆的中心在原点,焦点在x轴上,焦距等于6,离心率等于,则此椭圆的方程是
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线的离心率为e=,右焦点为F(c,0),方程ax2-bx-c=0的两个实根分别为x1和x2,则点P(x1,x2
A.在圆x2+y2=8外B.在圆x2+y2=8上
C.在圆x2+y2=8内 D.不在圆x2+y2=8内

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设双曲线  的右焦点为,右准线  与两条渐近线交于两点,如果是等边三角形,则双曲线的离心率的值为(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案