精英家教网 > 高中数学 > 题目详情
如图,已知点A(11,0),函数y=
x+1
的图象上的动点P在x轴上的射影为H,且点H在点A的左侧.设|PH|=t,△APH的面积为f(t).
(Ⅰ)求函数f(t)的解析式及t的取值范围;
(Ⅱ)求函数f(t)的最大值.
分析:( I)S△APH=
1
2
PH×AH.其中AH=OA-OH,OH等于P的横坐标,P的纵坐标即为|PH|=t,利用函数解析式可求OH.得出面积的表达式.
( II)由( I),面积为f(t)=
1
2
(12-t2)t,0<t<2
3
.利用导数工具研究单调性,求出最值.
解答:解:( I)由已知可得
x+1
=t
,所以点P的横坐标为t2-1,
因为点H在点A的左侧,所以t2-1<11,即-2
3
<t<2
3

由已知t>0,所以0<t<2
3

所以AH=11-(t2-1)=12-t2
所以△APH的面积为f(t)=
1
2
(12-t2)t,0<t<2
3

( II)f′(t)=6-
3
2
t2=-
3
2
(t+2)(t-2)

由f'(t)=0,得t=-2(舍),或t=2.
函数f(t)与f'(t)在定义域上的情况如右图:
所以当t=2时,函数f(t)取得最大值8.
点评:本题考查了函数的综合应用,其中有利用导数来求函数在某一区间上的最值问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知点P为椭圆
x2
25
+
y2
9
=1
在第一象限内的任意一点,过椭圆的右顶点A和上顶点B分别作与y轴和x轴的平行线交于C,过P引BC、AC的平行线交AC于N,交BC于M,交AB于D、E,矩形PMCN的面积是S1,三角形PDE的面积是S2,则S1:S2=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点A(11,0),直线x=t(-1<t<11)与函数y=
x+1
的图象交于点P,与x轴交于点H,记△APH的面积为f(t).
( I)求函数f(t)的解析式;
( II)求函数f(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.(矩阵与变换)
已知矩阵
12
2a
的属于特征值b的一个特征向量为
1
1
,求实数a、b的值.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,已知点A(1,-2)在曲线
x=2pt2
y=2pt
(t为参数,p为正常数),求p的值.
D.(不等式选讲)
设a1,a2,a3均为正数,且a1+a2+a3=1,求证:
1
a1
+
1
a2
+
1
a3
≥9

查看答案和解析>>

同步练习册答案