精英家教网 > 高中数学 > 题目详情
如图,已知点A(11,0),直线x=t(-1<t<11)与函数y=
x+1
的图象交于点P,与x轴交于点H,记△APH的面积为f(t).
( I)求函数f(t)的解析式;
( II)求函数f(t)的最大值.
分析:( I)由题意设点P坐标,来表示AH,PH的大小,计算出△APH的面积f(t)=
1
2
•AH•PH;
( II)【解法1】求f(t)的导函数f,(t),令f'(t)=0,求得f'(t)>0、<0的t的取值范围,从而求得f(t)的最大值.
【解法2】由f(t)=
1
2
(11-t)
t+1
=
1
2
(11-t)2(t+1)
,其中-1<t<11,设g(t)=(11-t)2(t+1),其中-1<t<11,利用求导法求出g(t)的最大值,从而得出f(t)的最大值.
解答:解:( I)由题意点P(x,y),则x=t,y=
t+1
,其中-1<t<11,
∴AH=11-t,PH=
t+1

所以△APH的面积为f(t)=
1
2
•AH•PH=
1
2
(11-t)
t+1
,其中-1<t<11.
( II)【解法1】∵f(t)=
1
2
(11-t)
t+1
,其中-1<t<11.
∴f,(t)=-
1
2
t+1
+
1
2
×(11-t)×
1
2
t+1
=
3(3-t)
4
t+1

由f'(t)=0,得t=3,
函数f(t)与f'(t)在定义域上的情况下表:

所以当t=3时,函数f(t)取得最大值8.
【解法2】由f(t)=
1
2
(11-t)
t+1
=
1
2
(11-t)2(t+1)
,-1<t<11,
设g(t)=(11-t)2(t+1),-1<t<11,
则g'(t)=-2(11-t)(t+1)+(11-t)2=(t-11)(t-11+2t+2)=3(t-3)(t-11).
函数g(t)与g'(t)在定义域上的情况下表:


所以当t=3时,函数g(t)取得最大值,
即当t=3时,函数f(t)取得最大值
1
2
g(3)
=8.
点评:本题考查了函数的综合应用,其中有利用导数来求函数在某一区间上的最值问题,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知点P为椭圆
x2
25
+
y2
9
=1
在第一象限内的任意一点,过椭圆的右顶点A和上顶点B分别作与y轴和x轴的平行线交于C,过P引BC、AC的平行线交AC于N,交BC于M,交AB于D、E,矩形PMCN的面积是S1,三角形PDE的面积是S2,则S1:S2=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

[选做题]在A、B、C、D四小题中只能选做2题,每小题10分,计20分.请把答案写在答题纸的指定区域内.
A.(选修4-1:几何证明选讲)
如图,圆O的直径AB=8,C为圆周上一点,BC=4,过C作圆的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E,求线段AE的长.
B.(选修4-2:矩阵与变换)
已知二阶矩阵A有特征值λ1=3及其对应的一个特征向量α1=
1
1
,特征值λ2=-1及其对应的一个特征向量α2=
1
-1
,求矩阵A的逆矩阵A-1
C.(选修4-4:坐标系与参数方程)
以平面直角坐标系的原点O为极点,x轴的正半轴为极轴,建立极坐标系(两种坐标系中取相同的单位长度),已知点A的直角坐标为(-2,6),点B的极坐标为(4,
π
2
)
,直线l过点A且倾斜角为
π
4
,圆C以点B为圆心,4为半径,试求直线l的参数方程和圆C的极坐标方程.
D.(选修4-5:不等式选讲)
设a,b,c,d都是正数,且x=
a2+b2
y=
c2+d2
.求证:xy≥
(ac+bd)(ad+bc)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知点A(11,0),函数y=
x+1
的图象上的动点P在x轴上的射影为H,且点H在点A的左侧.设|PH|=t,△APH的面积为f(t).
(Ⅰ)求函数f(t)的解析式及t的取值范围;
(Ⅱ)求函数f(t)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

选作题,本题包括A、B、C、D四小题,请选定其中两题,并在相应的答题区域内作答.若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.
A.(几何证明选讲)
如图,AB是半圆的直径,C是AB延长线上一点,CD切半圆于点D,CD=2,DE⊥AB,垂足为E,且E是OB的中点,求BC的长.
B.(矩阵与变换)
已知矩阵
12
2a
的属于特征值b的一个特征向量为
1
1
,求实数a、b的值.
C.(极坐标与参数方程)
在平面直角坐标系xOy中,已知点A(1,-2)在曲线
x=2pt2
y=2pt
(t为参数,p为正常数),求p的值.
D.(不等式选讲)
设a1,a2,a3均为正数,且a1+a2+a3=1,求证:
1
a1
+
1
a2
+
1
a3
≥9

查看答案和解析>>

同步练习册答案