分析 由$\overrightarrow a$+2$\overrightarrow b$+3$\overrightarrow c$=$\overrightarrow 0$,得到$\overrightarrow a$=-2$\overrightarrow b$-3$\overrightarrow c$,结合$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow b$•$\overrightarrow c$=$\overrightarrow c$•$\overrightarrow a$,得到|$\overrightarrow{b}$|=$\sqrt{-2\overrightarrow{b}•\overrightarrow{c}}$,|$\overrightarrow{c}$|=$\sqrt{-\overrightarrow{b}•\overrightarrow{c}}$,然后代入数量积求夹角公式求解.
解答 解:∵$\overrightarrow a$+2$\overrightarrow b$+3$\overrightarrow c$=$\overrightarrow 0$,
∴$\overrightarrow a$=-2$\overrightarrow b$-3$\overrightarrow c$,
代入$\overrightarrow a$•$\overrightarrow b$=$\overrightarrow b$•$\overrightarrow c$,得(-2$\overrightarrow b$-3$\overrightarrow c$)•$\overrightarrow b$=$\overrightarrow b$•$\overrightarrow c$,即|$\overrightarrow{b}$|=$\sqrt{-2\overrightarrow{b}•\overrightarrow{c}}$,
再代入$\overrightarrow b$•$\overrightarrow c$=$\overrightarrow c$•$\overrightarrow a$,$\overrightarrow b$•$\overrightarrow c$=$\overrightarrow c$•(-2$\overrightarrow b$-3$\overrightarrow c$),即|$\overrightarrow{c}$|=$\sqrt{-\overrightarrow{b}•\overrightarrow{c}}$,
∴cos<$\overrightarrow{b}$,$\overrightarrow{c}$>=$\frac{\overrightarrow{b}•\overrightarrow{c}}{|\overrightarrow{b}|•|\overrightarrow{c}|}$=-$\frac{\sqrt{2}}{2}$,
∴$\overrightarrow b$与$\overrightarrow c$的夹角为$\frac{3π}{4}$,
故答案为:$\frac{3π}{4}$.
点评 本题考查平面向量的数量积运算,考查了数学转化思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 0°<A≤30° | B. | 0°<A≤45° | ||
| C. | 0°<A≤60° 或120°≤A<180° | D. | 0°<A≤60° |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 命题p∧q是真命题 | B. | 命题p∧¬q是真命题 | ||
| C. | 命题¬p∧q是真命题 | D. | 命题¬p∨¬q是假命题 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在回归分析中,变量间的关系若是非确定性关系,那么因变量不能由自变量唯一确定 | |
| B. | 线性相关系数可以是正的也可以是负的 | |
| C. | 在回归分析中,如果r2=1或r=±1,说明x与y之间完全线性相关 | |
| D. | 样本相关系数r∈(-1,1) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com