6£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{\sqrt{3}}{2}$£¬F1£¬F2ÊÇÍÖÔ²CµÄÁ½¸ö½¹µã£¬PÊÇCÉÏÈÎÒâÒ»µã£¬ÇÒ¡÷PF1F2µÄÖܳ¤Îª8+4$\sqrt{3}$£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÉèÖ±ÏßlÓëÍÖÔ²ÏཻÓÚ²»Í¬µÄÁ½µãA¡¢B£¬ÒÑÖªµãAµÄ×ø±êΪ£¨-a£¬0£©£¬µãQ£¨0£¬-3£©ÔÚÏß¶ÎABµÄ´¹Ö±Æ½·ÖÏßÉÏ£¬ÇóÏÒABµÄ³¤£®

·ÖÎö £¨¢ñ£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍÍÖÔ²µÄ¶¨Òå¡¢¼°a£¬b£¬cµÄ¹ØÏµ£¬¼ÆËã¼´¿ÉµÃµ½ÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÓÉA£¨-4£¬0£©£¬¿ÉÉèABµÄ·½³ÌΪy=k£¨x+4£©£¬k¡Ù0£¬´úÈëÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬ÇóµÃMµÄ×ø±ê£¬ÓÉÁ½Ö±Ïß´¹Ö±µÄÌõ¼þ£¬¼´¿ÉÇóµÃÏÒ³¤£¬×¢ÒâÌÖÂÛk=0µÄÇé¿ö£®

½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâ¿ÉµÃe=$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$£¬
ÓÉÍÖÔ²µÄ¶¨Òå¿ÉµÃ£¬|PF1|+|PF2|=2a£¬
¡÷PF1F2µÄÖܳ¤Îª2a+2c=8+4$\sqrt{3}$£¬
½âµÃa=4£¬c=2$\sqrt{3}$£¬
b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{16-12}$=2£¬
¼´ÓÐÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1£»
£¨¢ò£©ÓÉA£¨-4£¬0£©£¬¿ÉÉèABµÄ·½³ÌΪy=k£¨x+4£©£¬k¡Ù0£¬
´úÈëÍÖÔ²·½³Ì£¬¿ÉµÃ£¨1+4k2£©x2+32k2x+64k2-16=0£¬
ÉèB£¨x2£¬y2£©£¬ABµÄÖеã×ø±êΪM£¨x0£¬y0£©£¬Ôò
x0=$\frac{-4+{x}_{2}}{2}$=$\frac{-16{k}^{2}}{1+4{k}^{2}}$£¬y0=k£¨x0+4£©=$\frac{4k}{1+4{k}^{2}}$£¬
ÔòM£¨$\frac{-16{k}^{2}}{1+4{k}^{2}}$£¬$\frac{4k}{1+4{k}^{2}}$£©£¬ÓÉkMQ=-$\frac{1}{K}$£¬¿ÉµÃ4k2-4k+1=0£¬½âµÃk=$\frac{1}{2}$£¬
´ËʱM£¨-2£¬1£©£¬|AB|=2|MA|=2$\sqrt{5}$£»
µ±k=0ʱ£¬ABµÄÖд¹ÏßΪyÖáÒ²ºÏÌâÒ⣬´Ëʱ|AB|=8£®
×ÛÉϿɵã¬ABµÄ³¤Îª8»ò2$\sqrt{5}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬×¢ÒâÔËÓÃÀëÐÄÂʹ«Ê½ºÍÍÖÔ²µÄ¶¨Ò壬¿¼²éÏÒ³¤µÄÇ󷨣¬×¢ÒâÔËÓÃÖ±Ïß·½³ÌºÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨ÀíºÍÖеã×ø±ê¹«Ê½£¬¿¼²éÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÉèÃüÌâp£ºx2-4ax+3a2£¼0£¨ÆäÖÐa£¾0£¬x¡ÊR£©£¬ÃüÌâq£º-x2+5x-6¡Ý0£¬x¡ÊR£®
£¨1£©Èôa=1£¬ÇÒp¡ÄqÎªÕæ£¬ÇóʵÊýxµÄȡֵ·¶Î§£»
£¨2£©Èô©VpÊÇ©VqµÄ³ä·Ö²»±ØÒªÌõ¼þ£¬ÇóʵÊýaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÈçͼÊÇ2016ÄêÎÒУÔÚºì¸è±ÈÈüÉÏ£¬ÆßλÆÀίΪij°à´ò³öµÄ·ÖÊýµÄ¾¥Ò¶Í³¼ÆÍ¼£¬Õâ×éÊý¾ÝµÄÖÐλÊýÊÇ£¨¡¡¡¡£©
A£®85B£®84C£®82D£®81

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®½«º¯Êýy=sinx£¬x¡ÊRµÄͼÏóÉÏËùÓеãµÄºá×ø±êËõ¶ÌΪԭÀ´µÄÒ»°ë£¬×Ý×ø±ê²»±ä£¬ËùµÃͼÏó¶ÔÓ¦µÄº¯Êý½âÎöʽΪ£¨¡¡¡¡£©
A£®y=sin$\frac{1}{2}x$£¬x¡ÊRB£®y=sin2x£¬x¡ÊRC£®y=$\frac{1}{2}$sinx£¬x¡ÊRD£®y=2sinx£¬x¡ÊR

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÉèF1£¬F2·Ö±ðÊÇÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã£¬¹ýF1ÇÒбÂÊΪ1µÄÖ±ÏßlÓëEÏཻÓÚA£¬BÁ½µã£¬ÇÒ|AF2|£¬|AB|£¬|BF2|³ÉµÈ²îÊýÁУ®
£¨1£©ÇóEµÄÀëÐÄÂÊ£»
£¨2£©ÉèA£¬BÁ½µã¶¼ÔÚÒÔP£¨-2£¬0£©ÎªÔ²ÐĵÄͬһԲÉÏ£¬ÇóEµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÍÖÔ²CµÄÖÐÐÄÔÚ×ø±êÔ­µã£¬½¹µãÔÚxÖáÉÏ£¬½¹µãµ½¶ÌÖá¶ËµãµÄ¾àÀëΪ2£¬ÀëÐÄÂÊΪ$\frac{\sqrt{3}}{2}$£®
£¨¢ñ£©Çó¸ÃÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßlÓëÍÖÔ²C½»ÓÚA£¬BÁ½µãÇÒOA¡ÍOB£¬ÊÇ·ñ´æÔÚÒÔÔ­µãOΪԲÐĵĶ¨Ô²ÓëÖ±ÏßlÏàÇУ¿Èô´æÔÚÇó³ö¶¨Ô²·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=x+$\frac{a}{x}$-2lnx£¬a¡ÊR£®
£¨1£©Èôf£¨x£©ÔÚ¶¨ÒåÓòÉÏΪµ¥µ÷º¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©Èôº¯Êýf£¨x£©ÓÐÁ½¸ö¼«Öµµãx1£¬x2£¬ÇÒx1£¼x2£¬Ö¤Ã÷£ºf£¨x2£©£¼x2-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®OÎªÆ½ÃæÉϵ͍µã£¬A¡¢B¡¢CÊÇÆ½ÃæÉϲ»¹²ÏßµÄÈýµã£¬Èô£¨$\overrightarrow{OA}$-$\overrightarrow{OC}$£©•£¨$\overrightarrow{OA}$+$\overrightarrow{OC}$-2$\overrightarrow{OB}$£©=0£¬Ôò¡÷ABCÊÇ£¨¡¡¡¡£©
A£®ÒÔABΪµ×±ßµÄµÈÑüÈý½ÇÐÎB£®ÒÔABΪб±ßµÄÖ±½ÇÈý½ÇÐÎ
C£®ÒÔACΪµ×±ßµÄµÈÑüÈý½ÇÐÎD£®ÒÔACΪб±ßµÄÖ±½ÇÈý½ÇÐÎ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÔÚ¡÷ABCÖÐa£¬b£¬c·Ö±ðΪ½ÇA£¬B£¬CµÄ¶Ô±ß£¬ÇÒ$\sqrt{3}$bcosA=asinB
£¨¢ñ£©Çó½ÇA
£¨¢ò£©Èôa=2$\sqrt{3}$£¬ÇóbcµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸