精英家教网 > 高中数学 > 题目详情
14.将函数y=sinx,x∈R的图象上所有点的横坐标缩短为原来的一半,纵坐标不变,所得图象对应的函数解析式为(  )
A.y=sin$\frac{1}{2}x$,x∈RB.y=sin2x,x∈RC.y=$\frac{1}{2}$sinx,x∈RD.y=2sinx,x∈R

分析 由条件利用函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:将函数y=sinx,x∈R的图象上所有点的横坐标缩短为原来的一半,纵坐标不变,
所得图象对应的函数解析式为y=sin2x的图象,
故选:B.

点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=xn-lnx-1(n∈N*,n≥2).
(1)若n=2,求函数f(x)的极值;
(2)求证:①函数f(x)存在两个零点x1,x2
②x1x2>e${\;}^{\frac{2}{n}-2}$(e为自然对数的底数.)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.下列命题:
①在一个2×2列联表中,由计算得k2=6.679,则有99%的把握确认这两个变量间有关系.
②随机变量X服从正态分布N(1,2),则P(X<0)=P(x>2);
③若二项式${({x+\frac{2}{x^2}})^n}$的展开式中所有项的系数之和为243,则展开式中x-4的系数是40
④连掷两次骰子得到的点数分别为m,n,记向量$\overrightarrow{a}$=(m,n)与向量$\overrightarrow{b}$=(1,-1)的夹角为θ,则θ∈(0,$\frac{π}{2}$]的概率是$\frac{7}{12}$.
⑤若(x-2)5=a5x5+a4x4+a3x3+a2x2+a1x+a0,则a1+a2+a3+a4+a5=31;
其中正确命题的序号为①②④⑤.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.对称轴为坐标轴的椭圆与的焦点F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),P为椭圆上任意一点,满足|PF1|+|PF2|=4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设不过原点O的直线l:y=kx+m与椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.对称轴为坐标轴的椭圆与的焦点F1(-$\sqrt{3}$,0),F2( $\sqrt{3}$,0),P为椭圆上任意一点,满足|PF1|+|PF2|=4.
(Ⅰ)求椭圆的方程;
(Ⅱ)设不过原点O的直线l:y=kx+$\frac{1}{2}$与椭圆交于P,Q两点,满足直线OP,PQ,OQ的斜率依次成等比数列,O到直线PQ的距离为$\frac{1}{\sqrt{5}}$,求S△OPQ的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,且离心率为$\frac{\sqrt{3}}{3}$,M为椭圆上一点,△MF1F2的周长为2$\sqrt{3}$+2.
(1)求椭圆E的方程;
(2)若直线l过点F2,l与圆O:x2+y2=5相交于P,Q两点,l与椭圆E相交于R,S两点,若|PQ|∈[4,$\sqrt{19}$],求△F1RS的面积的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,F1,F2是椭圆C的两个焦点,P是C上任意一点,且△PF1F2的周长为8+4$\sqrt{3}$.
(Ⅰ)求椭圆的方程;
(Ⅱ)设直线l与椭圆相交于不同的两点A、B,已知点A的坐标为(-a,0),点Q(0,-3)在线段AB的垂直平分线上,求弦AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点($\sqrt{2}$,$\frac{\sqrt{2}}{2}$).
(Ⅰ)求椭圆方程;
(Ⅱ)设不过原点O的直线l:y=kx+m(k≠0),与该椭圆交于P、Q两点,直线OP、OQ的斜率一次为k1、k2,满足4k=k1+k2
(i)当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由;
(ii)求△OPQ面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若数列{an}满足:a1=1,an+1=2an(n∈N+),则其前7项的和S7=127.

查看答案和解析>>

同步练习册答案