精英家教网 > 高中数学 > 题目详情
6.已知向量$\overrightarrow{a}$=(1,0,-1),$\overrightarrow{b}$=(0,-2,2),则向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{2π}{3}$.

分析 利用向量夹角公式即可得出.

解答 解:$cos<\overrightarrow{a},\overrightarrow{b}>$=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{a}||\overrightarrow{b}|}$=$\frac{0+0-2}{\sqrt{2}×\sqrt{8}}$=-$\frac{1}{2}$,
∴$<\overrightarrow{a},\overrightarrow{b}>$=$\frac{2π}{3}$.
故答案为:$\frac{2π}{3}$.

点评 本题考查了向量夹角公式,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.设f(x)=6cos2x-2$\sqrt{3}$sinxcosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.长时间用手机上网严重影响着学生身心健康及学习成绩,某校为了解高二年级A,B两班学生手机上网的时长,分别从这两个班中随机抽取6名同学进行调查,将他们平均每周手机上网时长作为样本数据,A班(单位:小时/每周):9,37,11,20,13,24;B班:11,36,21,25,27,12(单位:小时/每周).注:规定学生平均每周手机上网的时长超过21小时,称为“过度用网”.
(Ⅰ)根据两组数据绘制茎叶图(图中的茎表示十位数字,叶表示个位数字),根据样本数据,分别估计A,B两班的学生平均每周上网时长的平均值,并比较哪个班的学生平均上网时间较长;
A班B班
0
1
2
3
(II)从A班、B班的样本中各随机抽取2名学生的数据,记“过度用网”的学生人数为ξ,写出ξ的分布列和数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=sin(x+$\frac{π}{6}$)的一个递减区间是(  )
A.[-$\frac{π}{2}$,$\frac{π}{2}$]B.[-π,0]C.[-$\frac{2π}{3}$,$\frac{2π}{3}$]D.[$\frac{π}{3}$,$\frac{4π}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知二次函数f(x)满足f(2+x)=f(2-x)(x∈R),且该函数的图象与y轴交于点(0,3),在x轴上截得的线段长为2,则该二次函数的解析式为f(x)=x2-4x+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知复数z0=3+2i,则复数|z0|=$\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知x2+4x+y2-6y+13=0,求$\frac{x-2y}{{x}^{2}+{y}^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.直线x-y+3=0的倾斜角所在的区间是(  )
A.(0,$\frac{π}{4}$)B.[$\frac{π}{4}$,$\frac{π}{2}$)C.($\frac{π}{2}$,$\frac{3π}{4}$)D.[$\frac{3π}{4}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x3+ax2+bx(a,b∈R)的图象过点P(1,2)且在x=$\frac{1}{3}$处取得极值点.
(1)求a、b的值
(2)求 函数f(x)的单调区间.
(3)求 函数 f(x)在[-1,1]上的最值.

查看答案和解析>>

同步练习册答案