精英家教网 > 高中数学 > 题目详情
9.如图,在半径为R的圆内随机撒一粒黄豆,它落在阴影部分内接正三角形上的概率是$\frac{3\sqrt{3}}{4π}$

分析 根据几何概型的概率公式,分别求出正三角形和圆的面积,代入几何概型公式,即可得到答案.

解答 解:设圆O是半径为R=2,圆O的面积为πR2=4π
则圆内接正三角形的边长为2$\sqrt{3}$,而正三角形ABC的面积为$\frac{\sqrt{3}}{4}×(2\sqrt{3})^{2}$=3$\sqrt{3}$,
∴豆子落在正三角形ABC内的概率P=$\frac{3\sqrt{3}}{4π}$.
故答案为:$\frac{3\sqrt{3}}{4π}$.

点评 本题主要考查几何概型中的面积类型,基本方法是:分别求得构成事件A的区域面积和试验的全部结果所构成的区域面积,两者求比值,即为概率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知曲线C1:$\left\{{\begin{array}{l}{x=cosθ}\\{y=sinθ}\end{array}}$(θ为参数),曲线C2:$\left\{{\begin{array}{l}{x=\frac{{\sqrt{2}}}{2}t-\sqrt{2}}\\{y=\frac{{\sqrt{2}}}{2}t}\end{array}}$(t为参数).
(1)指出C1,C2各是什么曲线;
(2)求曲线C1与C2公共点M的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.一个四面体,其中一个顶点A的三个角分别为60°,θ,90°,其中tanθ=2,则θ角与60°角所在面的二面角的余弦值为$-\frac{{\sqrt{3}}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.圆心在抛物线x2=2y上且与直线2x+2y-3=0相切的圆中,面积最小的圆的方程为$(x+1)^{2}+(y-\frac{1}{2})^{2}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.为了响应政府“节能、降耗、减排、增效”的号召,某工厂决定转产节能灯,现有A、B两种型号节能灯的生产线.在这两种生产线的大量产品中各随机抽取100个进行质量评估,经检测,综合得分情况如图的频率分布直方图:

产品级别划分以及利润率如表,其中$\frac{1}{10}$<a<$\frac{1}{6}$;将频率视为概率.
综合得分k的范围产品级别产品利润率
k≥85一级a
75≤k<85二级5a2
70≤k<75三级a2
(Ⅰ)在A型节能灯中按产品级别用分层抽样的方法抽取10个,在这10个节能灯中随机抽取3个,至少有2个一级品的概率是多少?
(Ⅱ)从长期来看,投资哪种型号的节能灯的平均利润率较大?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知复数z=$\frac{2}{1-i}$-2i,则z的共轭复数是(  )
A.1-iB.1+2iC.1-2iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)是定义在(-∞,0)上的可导函数,其导函数为f'(x),且3f(x)+xf'(x)<0,则不等式(x+2016)3f(x+2016)+8f(-2)<0的解集是(-2018,-2016).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在△ABC中,∠B=$\frac{π}{3}$,AB=8,点D在边BC上,cos∠ADC=$\frac{1}{7}$,则sin∠BAD=$\frac{3\sqrt{3}}{14}$,BD=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,a、b、c分别是角A、B、C的对边,已知a2cosAsinB=b2sinAcosB,则△ABC为(  )
A.等腰三角形B.等腰直角三角形
C.直角三角形D.等腰三角形或直角三角形

查看答案和解析>>

同步练习册答案