精英家教网 > 高中数学 > 题目详情
设直线的斜率为2且过抛物线的焦点F,又与轴交于点A,为坐标原点,若的面积为4,则抛物线的方程为:
A.B.C.D.
D

试题分析:解:抛物线y2=ax(a≠0)的焦点F坐标为(,0),则直线l的方程为y=2(x-),它与y轴的交点为A(0,-),所以△OAF的面积为所以抛物线方程为故选D.
点评:本题主要考查了抛物线的标准方程,点斜式求直线方程等.考查学生的数形结合的思想的运用和基础知识的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,椭圆的右焦点与抛物线的焦点重合,过作与轴垂直的直线与椭圆交于,而与抛物线交于两点,且.

(Ⅰ)求椭圆的方程;
(Ⅱ)若过的直线与椭圆相交于两点
为椭圆上一点,且满足为坐标原点),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直角坐标系中,一直角三角形,B、D在轴上且关于原点对称,在边上,BD=3DC,△ABC的周长为12.若一双曲线以B、C为焦点,且经过A、D两点.

⑴ 求双曲线的方程;
⑵ 若一过点为非零常数)的直线与双曲线相交于不同于双曲线顶点的两点,且,问在轴上是否存在定点,使?若存在,求出所有这样定点的坐标;若不存在,请说明理由

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线与椭圆交于两点,已知
,若且椭圆的离心率,又椭圆经过点
为坐标原点.
(Ⅰ)求椭圆的方程;
(Ⅱ)若直线过椭圆的焦点为半焦距),求直线的斜率的值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知椭圆上的一点P,到椭圆一个焦点的距离为3,则P到另一焦点距离为(    )
A.2B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是双曲线的两个焦点,Q是双曲线上任一点(不是顶点),从某一焦点引的平分线的垂线,垂足为P,则点P的轨迹是
A.直线B.圆C.椭圆D.双曲线

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

方程+=1({1,2,3,4,…,2013})的曲线中,所有圆面积的和等于       ,离心率最小的椭圆方程为                      .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的焦点坐标是______________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

圆C的圆心在y轴上,且与两直线l1;l2均相切.
(I)求圆C的方程;
(II)过抛物线上一点M,作圆C的一条切线ME,切点为E,且的最小值为4,求此抛物线准线的方程.

查看答案和解析>>

同步练习册答案