分析 先把题设条件代入关于A的余弦定理中,求得cosA的值,进而利用同角三角函数的基本关系求得sinA的值.
解答 解:∵3b2+3c2-3a2=4$\sqrt{2}$bc,
∴由余弦定理得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{2\sqrt{2}}{3}$,
又0<A<π,故sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.
点评 本题主要考查了余弦定理的应用,同角三角函数的基本关系的应用以及用诱导公式和两角和公式化简求值.考查了学生对基础知识的掌握和基本的计算能力.
科目:高中数学 来源: 题型:选择题
| A. | $(0,\frac{1}{2})$ | B. | ($\frac{1}{2}$,1) | C. | ($\frac{1}{2}$,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (kπ-$\frac{π}{2}$,kπ+$\frac{π}{2}$) | B. | (kπ,(k+1)π) | C. | (kπ-$\frac{π}{4}$,kπ+$\frac{3π}{4}$) | D. | (kπ-$\frac{3π}{4}$,kπ+$\frac{π}{4}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 | B. | 9 | C. | 8 | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 极大值点为(e,e${\;}^{\frac{1}{e}}$) | B. | 极小值点为(e,e${\;}^{\frac{1}{e}}$) | ||
| C. | 极大值点为e | D. | 极小值点为e |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com