精英家教网 > 高中数学 > 题目详情
17.△ABC的内角A,B,C的对边分别为a,b,c,且3b2+3c2-3a2=4$\sqrt{2}$bc,则sinA=$\frac{1}{3}$.

分析 先把题设条件代入关于A的余弦定理中,求得cosA的值,进而利用同角三角函数的基本关系求得sinA的值.

解答 解:∵3b2+3c2-3a2=4$\sqrt{2}$bc,
∴由余弦定理得cosA=$\frac{{b}^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{2\sqrt{2}}{3}$,
又0<A<π,故sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{1}{3}$.
故答案为:$\frac{1}{3}$.

点评 本题主要考查了余弦定理的应用,同角三角函数的基本关系的应用以及用诱导公式和两角和公式化简求值.考查了学生对基础知识的掌握和基本的计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.若函数$y={({log_{\frac{1}{2}}}a)^x}$在R上为增函数,则a的取值范围是(  )
A.$(0,\frac{1}{2})$B.($\frac{1}{2}$,1)C.($\frac{1}{2}$,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=tan(x+$\frac{π}{4}$)的单调递增区间为(以下的k∈Z)(  )
A.(kπ-$\frac{π}{2}$,kπ+$\frac{π}{2}$)B.(kπ,(k+1)π)C.(kπ-$\frac{π}{4}$,kπ+$\frac{3π}{4}$)D.(kπ-$\frac{3π}{4}$,kπ+$\frac{π}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设{an}为等差数列,Sn为数列{an}的前n项和,已知S7=7,S15=75.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若bn=2an+n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某运动员在某赛季的得分如图的茎叶图,该运动员得分的方差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知在${(\root{3}{x}-\frac{1}{{2\root{3}{x}}})^n}$的展开式中,第6项为常数项,则n为(  )
A.10B.9C.8D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=2sin2x+sin2x的最小正周期(  )
A.$\frac{π}{4}$B.$\frac{π}{2}$C.πD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知求形如函数y=(f(x))g(x)的导数的方法如下:先两边同取自然对数得:lny=g(x)lnf(x),再两边同时求导数得到:$\frac{1}{y}$•y′=g′(x)•lnf(x)+g(x)•$\frac{1}{f(x)}$•f′(x),于是得到y′=(f(x))g(x)•(g′(x)•lnf(x)+g(x)•$\frac{1}{f(x)}•$f′(x)).运用此方法求得函数y=x${\;}^{\frac{1}{x}}$(x>0)的极值情况是(  )
A.极大值点为(e,e${\;}^{\frac{1}{e}}$)B.极小值点为(e,e${\;}^{\frac{1}{e}}$)
C.极大值点为eD.极小值点为e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆的一个顶点A(0,-1),焦点在x轴上,且右焦点到直线x-y+2$\sqrt{2}$=0的距离为3.
(1)求椭圆的方程;
(2)椭圆上任一点P到左焦点的距离的最小与最大值.

查看答案和解析>>

同步练习册答案