精英家教网 > 高中数学 > 题目详情
7.若函数$y={({log_{\frac{1}{2}}}a)^x}$在R上为增函数,则a的取值范围是(  )
A.$(0,\frac{1}{2})$B.($\frac{1}{2}$,1)C.($\frac{1}{2}$,+∞)D.(1,+∞)

分析 根据指数函数的单调性进行求解即可.

解答 解:∵$y={({log_{\frac{1}{2}}}a)^x}$在R上为增函数,
∴${log_{\frac{1}{2}}}a>1∴0<a<\frac{1}{2}$,
故选:A

点评 本题主要考查指数函数的图象和性质,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知复数z满足|z|=z+1-3i(其中i为虚数单位),则$\frac{z}{1+i}$的共轭复数是(  )
A.$\frac{7}{2}$+$\frac{1}{2}$iB.-$\frac{7}{2}$+$\frac{1}{2}$iC.$\frac{7}{2}$-$\frac{1}{2}$iD.4-3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在递增的等比数列{an}中,已知a1+an=34,a3•an-2=64,且前n项和为Sn=62,则n=(  )
A.6B.5C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知{an}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.
(1)求数列{an}的通项和前n项和Sn
(2)令bn=an•3n,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{an},an∈N*,Sn=$\frac{1}{8}$(an+2)2,若bn=$\frac{1}{2}$an-30,求数列{bn}的前n项和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.6个人排成一排照相,其中甲乙两人不能站在一起,不同的排法有480种.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,若BC=5,AC=7,AB=8,则△ABC的最大角与最小角之和是120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图,为了测得河对岸A、B两点间的距离,在这一岸定一基线CD,现已测得CD=a,∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,则AB=(  )
A.$\frac{1}{2}$aB.$\frac{{\sqrt{2}}}{2}$aC.$\frac{{\sqrt{3}}}{2}$aD.a

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.△ABC的内角A,B,C的对边分别为a,b,c,且3b2+3c2-3a2=4$\sqrt{2}$bc,则sinA=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案