精英家教网 > 高中数学 > 题目详情
16.已知圆C:(x-1)2+y2=2,过点A(-1,0)的直线l将圆C分成弧长之比为1:3的两段圆弧,求直线l的方程.

分析 设出过点A的直线l的方程,利用圆心C到直线l的距离和直角三角形的知识,即可求出直线的方程.

解答 解:设直线l的方程为y=k(x+1),即kx-y+k=0,
圆心C(1,0)到直线l的距离为$\frac{|k+k|}{\sqrt{{k}^{2}+1}}$,
∵直线l将圆C分成弧长之比为1:3的两段弧,
∴直线被圆所截得的弦所对的圆心角为$\frac{π}{2}$,
又圆C的半径为$\sqrt{2}$,
∴$\sqrt{2}$•cos$\frac{π}{4}$=$\frac{|k+k|}{\sqrt{{k}^{2}+1}}$,
∴k2=$\frac{1}{3}$,∴k=$±\frac{\sqrt{3}}{3}$;
∴直线l的方程为y=$\frac{\sqrt{3}}{3}$(x+1)或y=-$\frac{\sqrt{3}}{3}$(x+1).

点评 本题考查了直线与圆的位置关系的应用问题,也考查了求直线方程的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.某市一路公共汽车每天早晨在6:20-6:40内任何时刻随机的发出第一班车,在6:40-7:00内任何时刻随机的发出第二班车,在7:00-7:20内任何时刻随机的发出第三班车,老张每天早晨在6:20-7:20内任意时刻都等可能的到一路公共汽车的起点站乘车上班(假设老张上班只乘坐一路公共汽车),则老张乘一路公共汽车前三班的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.从甲、乙、丙三人中任选2名代表,甲被选中的概率为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数y=$\frac{{{{log}_2}(x-3)}}{{\sqrt{4-x}}}$的定义域是(  )
A.(-∞,4)B.(-∞,4]C.(3,4]D.(3,4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知p:关于x的不等式x2-(2m+9)x+m(m+9)<0,q:关于x的不等式x2-x-6<0,集合M={x|x2-(2m+9)x+m(m+9)<0},N={x|x2-x-6<0}.
(1)当m=1时,求集合M;
(2)若p是q的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知(1+ax)(1-x)2的展开式中x2的系数为5,则a等于-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设已知向量$\vec a$=(sinωx,$\sqrt{3}$cosωx),$\vec b$=(cosωx,cosωx),函数f(x)=$\vec a$•$\vec b$+m(其中ω>0,m∈R),且f(x)的图象在y轴右侧的第一个高点的横坐标为$\frac{π}{12}$.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)如果f(x)在区间[-$\frac{π}{3}$,$\frac{5π}{12}}$]上的最小值为$\sqrt{3}$,求m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设f(x)是(0,+∞)上的增函数,当n∈N+时,f(n)∈N+,且f[f(n)]=2n+1,则f(1)=2,f(2)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知ab>0,则$\frac{b}{a}$+$\frac{a}{b}$的取值范围是[2,+∞).

查看答案和解析>>

同步练习册答案