精英家教网 > 高中数学 > 题目详情
6.某市一路公共汽车每天早晨在6:20-6:40内任何时刻随机的发出第一班车,在6:40-7:00内任何时刻随机的发出第二班车,在7:00-7:20内任何时刻随机的发出第三班车,老张每天早晨在6:20-7:20内任意时刻都等可能的到一路公共汽车的起点站乘车上班(假设老张上班只乘坐一路公共汽车),则老张乘一路公共汽车前三班的概率是$\frac{5}{6}$.

分析 设汽车在7:00-7:20发车为变量x,老张在7:00-7:20达到为变量y,要使老张乘1路公共汽车前3班车,只要x≤y,画出图形,求出面积,利用几何概型公式解答.

解答 解:设汽车在7:00-7:20发车为变量x,老张在7:00-7:20达到为变量y,
要使老张乘1路公共汽车前3班车,只要x≤y,
如图示:

满足条件的如图阴影部分,
∴老张乘1路公共汽车前3班车的概率为1-$\frac{\frac{1}{2}×20×20}{20×60}$=$\frac{5}{6}$,
故答案为:$\frac{5}{6}$.

点评 本题考查了几何概型的运用;关键是明确老张乘1路公共汽车前3班车与汽车达到的时间的关系,分别求出面积,利用几何概型公式解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow u$=(x,y)与向量$\overrightarrow v$=(x-y,x+y)的对应关系用$\overrightarrow v$=f($\overrightarrow u$)表示.
(1)证明:对于任意向量$\overrightarrow a$、$\overrightarrow b$及常数m、n,恒有f(m$\overrightarrow a$+n$\overrightarrow b$)=mf($\overrightarrow a$)+nf($\overrightarrow b$);
(2)证明:对于任意向量$\overrightarrow a$,|f($\overrightarrow a$)|=$\sqrt{2}$|$\overrightarrow a$|;
(3)证明:对于任意向量$\overrightarrow a$、$\overrightarrow b$,若$\overrightarrow a$⊥$\overrightarrow b$,则f($\overrightarrow a$)⊥f($\overrightarrow b$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.双曲线$\frac{y^2}{9}-\frac{x^2}{7}$=1的焦点坐标为(0,4),(0,-4).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设向量$\overrightarrow a$,$\overrightarrow b$满足|${\overrightarrow a$+$\overrightarrow b}$|=$\sqrt{10}$,|${\overrightarrow a$-$\overrightarrow b}$|=$\sqrt{6}$,则$\overrightarrow a$•$\overrightarrow b$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.4名男歌手和2名女歌手联合举行一场音乐会,出场顺序要求两名女歌手不相邻,共有出场方案的种数是(  )
A.$A_4^4A_5^2$B.$A_4^4A_3^2$C.$A_4^4A_2^2$D.$A_4^4A_4^1A_3^1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知f(n)=sin$\frac{nπ}{6}$(n∈N*),则f(1)+f(2)+…+f(2015)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在区间(0,1)内任取两个数,则这两个数的和小于$\frac{6}{5}$的概率为(  )
A.$\frac{18}{25}$B.$\frac{17}{25}$C.$\frac{16}{25}$D.$\frac{12}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.命题p:“方程$\frac{x^2}{m}$+$\frac{y^2}{2}$=1是焦点在x轴上的椭圆”;命题q:“已知函数f(x)=$\frac{4}{3}$x3-2mx2+(4m-3)x,方程f'(x)=0没有实数根”.若“p且q”是假命题,“p或q”是真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆C:(x-1)2+y2=2,过点A(-1,0)的直线l将圆C分成弧长之比为1:3的两段圆弧,求直线l的方程.

查看答案和解析>>

同步练习册答案