分析 对于命题p,利用椭圆的性质可得m的范围.对于命题q:利用导数的运算法则、一元二次方程与判别式的关系即可得出m的取值范围.对于“p且q”是假命题,“p或q”是真命题,则p与q必然一真一假,即可得出.
解答 解:∵方程$\frac{x^2}{m}+\frac{y^2}{2}=1$是焦点在x轴上的椭圆,∴m>2,∴若p为真命题,则m>2.
又∵f'(x)=4x2-4mx+(4m-3)=0没有实数根,∴△=16m2-64m+48<0,解得1<m<3,
∴若q为真命题,则1<m<3,
又∵“p且q”是假命题,“p或q”是真命题,∴p是真命题且q是假命题,或p是假命题且q是真命题,
∴$\left\{\begin{array}{l}m>2\\ m≤1,或m≥3\end{array}\right.$,或$\left\{\begin{array}{l}m≤2\\ 1<m<3\end{array}\right.$,
∴m的取值范围是(1,2]∪[3,+∞).
点评 本题考查了简易逻辑的判定方法、椭圆的性质、导数的运算法则、一元二次方程与判别式的关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-2,0)∪(0,2) | B. | (-∞,-2)∪(2,+∞) | C. | (-2,0),(0,2) | D. | (-∞,-2),(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{7}{2}$ | B. | 3 | C. | $\frac{5}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,4) | B. | (-∞,4] | C. | (3,4] | D. | (3,4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com