精英家教网 > 高中数学 > 题目详情

某高级中学共有学生2000名,各年级男、女生人数如下表:

 
高一年级
高二年级
高三年级
女生
373
x
y
男生
377
370
z
已知在全校学生中随机抽取1名,抽到高二年级女生的概率是0.19.
(Ⅰ)求x的值;
(Ⅱ)现用分层抽样的方法在全校抽取48名学生,问应在高三年级抽取多少名?

解析解:(1)        人;
(2)高三年级人数为yz=2000-(373+377+380+370)=500,
现用分层抽样的方法在全校抽取48名学生,应在高三年级抽取的人数为:
 名

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

.(本题满分12分)


某地统计局就本地居民的月收入调查了人,并根据所得数据画了样本的频率分布直方图(每个分组包括左端点,不包括右端点,如第一组
表示收入在之间).
(Ⅰ)根据频率分布直方图估计样本 
数据的中位数所在的区间;
(Ⅱ)求被调查居民月收入在
之间的人数;
(Ⅲ)为了分析居民的收入与年龄、职业等方面的关系,必须按月收入再从这人中,用分层抽样方法抽出人作进一步分析,则月收入在的这段应抽多少人?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)为了了解中学生的体能情况,抽取了某校一个年级的部分学生进行一次跳绳次数测试,将所得的数据 整理后,画出频率分布直方图,如下图所示,已知图中从左到右前三个小组的频率分别为  第一小组的频数为5
(1)求第四小组的频率;
(2)参加这次测试的学生数是多少?
(3)若次数在60次以上(含60次)为达标,试求该年级学生跳绳测试的达标率是多少?
(4)利用直方图估计该年级学生此次跳绳次数的平均值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)某班50名学生在一次数学测试中,成绩全部介于50与100之间,将测试结果按如下方式分成五组:第一组,第二组,…,第五组.下图是按上述分组方法得到的频率分布直方图。

(Ⅰ)若成绩大于或等于60且小于80,认为合格,求该班在这次数学测试中成绩
合格的人数;
(Ⅱ)从测试成绩在内的所有学生中随机抽取两名同学,设其测试成绩分别为,求事件“”概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
甲、乙两运动员进行射击训练,已知他们击中的环数都稳定在7,8,9,10环,且每次射击成绩互不影响.射击环数的频率分布条形图如下:

若将频率视为概率,回答下列问题:
(I)求甲运动员在3次射击中至少有1次击中9环以上(含9环)的概率;
(II)若甲、乙两运动员各自射击1次,表示这2次射击中击中9环以上(含9环)的次数,求的分布列及

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共13分)某中学号召学生在今年春节期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.

(I)求合唱团学生参加活动的人均次数;
(II)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.
(III)从合唱团中任选两名学生,用表示这两人参加活动次数之差的绝对值,求随机变量的分布列及数学期望

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)

随机抽取某中学甲乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图                                       .                                 
⑴根据茎叶图判断哪个班的平均身高较高;
⑵计算甲班的样本方差.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)某农科所对冬季昼夜温差与某反季节大豆种子发芽多少之间的关系进行分析研究,他们记录了12月1日至5日的昼夜温差与每天100颗种子的发芽数,数据如下表:

日 期
12月1日
12月2日
12月3日
12月4日
12月5日
温差(0C)
10
11
13
12
8
发芽数(颗)
23
25
30
26
16
该农科所确定的研究方案是:先从五组数据中选取两组,用剩下的3组数据求线性回归方程,再用被选取的两组数据进行检验.
(1) 若先选取的是12月1日和5日的数据,请根据2日至4日的三组数据,求关于的线性回归方程
(2) 若由回归方程得到的估计数据与检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试判断(1)中所得的线性回归方程是否可靠?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
随机抽取名学生,测得他们的身高(单位:),按照区间分组,得到样本身高的频率分布直方图(如图).
(Ⅰ)求频率分布直方图中的值及身高在以上的学生人数;
(Ⅱ)将身高在区间内的学生依次记为三个组,用分层抽样的方法从三个组中抽取人,求从这三个组分别抽取的学生人数;
(Ⅲ)在(Ⅱ)的条件下,要从名学生中抽取人,用列举法计算组中至少有人被抽中的概率.

查看答案和解析>>

同步练习册答案