精英家教网 > 高中数学 > 题目详情
14.执行如图的程序框图,若输入N=2016,则输出S等于(  )
A.$\frac{2014}{2015}$B.$\frac{2015}{2016}$C.$\frac{2016}{2017}$D.$\frac{2013}{2014}$

分析 分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输出S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{2016×2017}$的值,用裂项法即可计算求值得解.

解答 解:分析程序中各变量、各语句的作用,
再根据流程图所示的顺序,可知:
该程序的作用是累加并输出S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{2016×2017}$的值.
而S=$\frac{1}{1×2}$+$\frac{1}{2×3}$+…+$\frac{1}{2016×2017}$=1-$\frac{1}{2017}$=$\frac{2016}{2017}$.
故选:C.

点评 根据流程图(或伪代码)写程序的运行结果,是算法这一模块最重要的题型,其处理方法是:①分析流程图(或伪代码),从流程图(或伪代码)中即要分析出计算的类型,又要分析出参与计算的数据(如果参与运算的数据比较多,也可使用表格对数据进行分析管理)⇒②建立数学模型,根据第一步分析的结果,选择恰当的数学模型③解模.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.给出下列结论:
①2ab是a2+b2的最小值;
②设a>0,b>0,2$\sqrt{ab}$的最大值是a+b;
③$\sqrt{{x}^{2}+4}$+$\frac{1}{\sqrt{{x}^{2}+4}}$的最小值是2;
④若x>0,则cosx+$\frac{1}{cosx}$≥2$\sqrt{cosx•\frac{1}{cosx}}$=2;
⑤若a>b>0,$\frac{a+b}{2}$>$\sqrt{ab}$>$\frac{2ab}{a+b}$.
其中正确结论的编号是⑤.(写出所有正确的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x+$\frac{a}{x}$,x∈(0,+∞).
(I)当a=1时,试用函数单调性的定义,判断函数f(x)的单调性;
(II)若x∈[3,+∞),关于x不等式x+$\frac{1}{x}$≥|m-$\frac{5}{3}$|+|m+$\frac{5}{3}$|恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,A、B、C、D、E在圆周上,且 A B∥C E,A E∥BD,BD交C E于点F,过 A点的圆的切线交C E的延长线于 P,若 PE=CF=1,P A=2.
(1)求 A E的长;
(2)求证:点F是 BD的中点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校为了研究学情,从高三年级中抽取了20名学生三次测试数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号12345678910
数学平均名次
物理平均名次
1.3
2.3
12.3
9.7
25.7
31.0
36.7
22.3
50.3
40.0
67.7
58.0
49.0
39.0
52.0
60.7
40.0
63.3
34.3
42.7
学生序号11121314151617181920
数学平均名次
物理平均名次
78.3
49.7
50.0
46.7
65.7
83.3
66.3
59.7
68.0
50.0
95.0
101.3
90.7
76.7
87.7
86.0
103.7
99.7
86.7
99.0
学校规定:平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀赋分2,对名次不优秀赋分1,从这20名学生中随机抽取2名学生,若用ξ表示这2名学生两科名次赋分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据列出2×2列联表,能否在犯错误的概率不超过0.025的前提下的物理成绩和数学成绩有关?
附:K2=$\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d
P(K2>k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知数列{an}的前n项和Sn=n2-9n(n∈N*),则a9的值为(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.执行如图所示的程序框图,则输出的结果S=(  )
A.$\frac{1}{2016}$B.$\frac{2015}{2016}$C.$\frac{1}{2015}$D.$\frac{2014}{2015}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知直线y=x+a与曲线y=ln(x+2)相切,则a=(  )
A.-1B.-2C.0D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.国内某知名大学有男生14000人,女生10000人.该校体育学院想了解本校学生的运动状况,根据性别采取分层抽样的方法从全校学生中抽取120人,统计他们平均每天运动的时间,如表:(平均每天运动的时间单位:小时,该校学生平均每天运动的时间范围是[0,3])
男生平均每天运动的时间分布情况:
平均每天运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数212231810x
女生平均每天运动的时间分布情况:
平均每天运动的时间[0,0.5)[0.5,1)[1,1.5)[1.5,2)[2,2.5)[2.5,3]
人数51218103y
(Ⅰ)请根据样本估算该校男生平均每天运动的时间(结果精确到0.1);
(Ⅱ)若规定平均每天运动的时间不少于2小时的学生为“运动达人”,低于2小时的学生为“非运动达人”.
①请根据样本估算该校“运动达人”的数量;
②请根据上述表格中的统计数据填写下面2×2列联表,并通过计算判断能否在犯错误的概率不超过0.05的前提下认为“是否为‘运动达人’与性别有关?”
运动达人非运动达人总  计
男  生
女  生
总  计
参考公式:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d.
参考数据:
P(K2≥k00.100.050.0250.0100.0050.001
k02.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案