精英家教网 > 高中数学 > 题目详情

【题目】已知函数

(1)讨论函数的单调性;

(2)设,当函数的图象有三个不同的交点时,求实数的取值范围.

【答案】(1) 函数上单调递增,上单调递减.

(2)

【解析】

(1)对函数求导,根据的不同取值,结合不等式,可以判断出函数的单调性;

(2)由题意可知:,得.得,

,则有三个不同的根等价于函数存在三个不同的零点.对函数进行求导,然后判断出其单调性,结合零点存在原理,最后求出实数的取值范围.

(1)的定义域是,

,

时.两数上单调递增;

,,;令,.

故函数上单调递增,上单洞递破.

(2)由,得.得,

,则有三个不同的根等价于函数存在三个不同的零点.

,

,单调递减,不可能有三个不同的零点,

有两个零点,

,

开口向下,

, ,函数上单调递诫:

时.函数上单调递增:

时.,函数上单调递减.

因为,又,有,

所以

,

.则.

.则单调递增.

,求得,

时,单调递减,.,

显然在上单调递增,

.

由零点存在性定理知在区间上有一个根.设为,

.得.所以.所以的另一个零点,

故当,存在三个不同的零点.

故实数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在斜三棱柱中,,侧面是边长为4的菱形,分别为的中点.

1)求证:平面

2)若,求二面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,平面PCDEAD的中点,ACBE相交于点O.

1)证明:平面ABCD.

2)求直线BC与平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】人们常说的“幸福感指数”就是指某个人主观地评价他对自己目前生活状态的满意程度的指标,常用区间内的一个数来表示,该数越接近表示满意度越高.为了解某地区居民的幸福感情况,随机对该地区的男、女居民各人进行了调查,调查数据如表所示:

幸福感指数

男居民人数

女居民人数

1)估算该地区居民幸福感指数的平均值;

2)若居民幸福感指数不小于,则认为其幸福.为了进一步了解居民的幸福满意度,调查组又在该地区随机抽取对夫妻进行调查,用表示他们之中幸福夫妻(夫妻二人都感到幸福)的对数,求的期望(以样本的频率作为总体的概率).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三实验班的60名学生期中考试的语文、数学成绩都在内,其中语文成绩分组区间是:.其成绩的频率分布直方图如图所示,这60名学生语文成绩某些分数段的人数与数学成绩相应分数段的人数之比如下表所示:

分组区间

语文人数

24

3

数学人数

12

4

1)求图中的值及数学成绩在的人数;

2)语文成绩在3名学生均是女生,数学成绩在4名学生均是男生,现从这7名学生中随机选取4名学生,事件为:“其中男生人数不少于女生人数”,求事件发生的概率;

3)若从数学成绩在的学生中随机选取2名学生,且这2名学生中数学成绩在的人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】世界军人运动会,简称军运会,是国际军事体育理事会主办的全球军人最高规格的大型综合性运动会,每四年举办一届,会期710天,比赛设27个大项,参赛规模约100多个国家8000余人,规模仅次于奥运会,是和平时期各国军队展示实力形象、增进友好交流、扩大国际影响的重要平台,被誉为军人奥运会”.根据各方达成的共识,军运会于20191018日至27日在武汉举行,赛期10天,共设置射击、游泳、田径、篮球等27个大项、329个小项.其中,空军五项、军事五项、海军五项、定向越野和跳伞5个项目为军事特色项目,其他项目为奥运项目.现对某国在射击比赛预赛中的得分数据进行分析,得到如下的频率分布直方图:

1)估计某国射击比赛预赛成绩得分的平均值(同一组中的数据用该组区间的中点值代表);

2)根据大量的射击成绩测试数据,可以认为射击成绩近似地服从正态分布,经计算第(1)问中样本标准差的近似值为50,用样本平均数作为的近似值,用样本标准差作为的估计值,求射击成绩得分恰在350400的概率;[参考数据:若随机变量服从正态分布,则:

3)某汽车销售公司在军运会期间推广一款新能源汽车,现面向意向客户推出玩游戏,送大奖,活动,客户可根据抛掷骰子的结果,操控微型遥控车在方格图上行进,若遥控车最终停在胜利大本营,则可获得购车优惠券.已知骰子出现任意点数的概率都是,方格图上标有第0格,第1格,第2格,……50格.遥控车开始在第0格,客户每抛掷一次骰子,遥控车向前移动一次,若抛掷出正面向上的点数是12345点,遥控车向前移动一格(从),若抛掷出正面向上的点数是6点,遥控车向前移动两格(从),直到遥控车移动到第49格(胜利大本营)或第50格(失败大本营)时,游戏结束.设遥控车移动到第格的概率为,试证明是等比数列,并求,以及根据的值解释这种游戏方案对意向客户是否具有吸引力.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程为

1)设椭圆的左右焦点分别为,点在椭圆上运动,求的值;

2)设直线和圆相切,和椭圆交于两点,为原点,线段分别和圆交于两点,设的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

Ⅰ)若为函数的极小值点,求的取值范围,并求的单调区间;

Ⅱ)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,棱长为1的正方体中,为线段的动点,则下列4个命题中正确的有( )个

1 2)平面平面

3的最大值为 4的最小值为

A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案