精英家教网 > 高中数学 > 题目详情
9.函数y=2sinπx(x∈R)的部分图象如图所示,设O为坐标原点,P是图象的最高点,B是图象与x轴的交点,则tan∠OPB的值为$\frac{16}{3}$.

分析 过P作PQ垂直于x轴,根据正弦函数的图象与性质,得出点P、B和Q的坐标,计算|PQ|,|OQ|,|BQ|的长,
利用锐角三角函数定义表示出tan∠OPQ和tan∠BPQ,计算tan∠OPB的值即可.

解答 解:过P作PQ⊥x轴,如图所示:

∵函数y=2sinπx,且P是图象的最高点,B是图象与x轴的交点,
∴P($\frac{1}{2}$,2),B(2,0),
即|PQ|=2,|OQ|=$\frac{1}{2}$,|OB|=2,
∴|QB|=|OB|-|OQ|=$\frac{3}{2}$,
在Rt△OPQ中,tan∠OPQ=$\frac{|OQ|}{|PQ|}$=$\frac{1}{4}$,
在Rt△PQB中,tan∠BPQ=$\frac{|BQ|}{|PQ|}$=$\frac{3}{4}$,
∴tan∠OPB=tan(∠OPQ+∠BPQ)=$\frac{\frac{1}{4}+\frac{3}{4}}{1-\frac{1}{4}×\frac{3}{4}}$=$\frac{16}{3}$.
故答案为:$\frac{16}{3}$.

点评 本题考查了两角和与差的正切函数公式,锐角三角函数定义以及正弦函数的图象与性质,作出辅助线PQ,找P、B的坐标是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=cos4x-2sinxcosx-sin4x.
(1)求函数的最小正周期;
(2)求函数的最大值及其相对应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设集合M={x|y=ln(x-1)},N={x|x=2t,-1≤t≤2},则M∩N=(  )
A.(1,4]B.[$\frac{1}{2}$,1)C.(1,2]D.[2,4]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=$\frac{\sqrt{2}}{2}$AB=2
(I)证明:BC1∥平面A1CD
(II)求直线EC1与面A1DC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.$\root{5}{-32}$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,函数y=log24x图象上的两点A,B和y=log2x上的点C,线段AC平行于y轴,三角形ABC为正三角形时,点B的坐标为(p,q),则p2×2q=(  )
A.12B.$12\sqrt{3}$C.6D.$6\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设A,B为抛物线y2=2px(p>0)上相异两点,则${|{\overrightarrow{OA}+\overrightarrow{OB}}|^2}-{|{\overrightarrow{AB}}|^2}$的最小值为-4p2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图所示的算法流程图中,第3个输出的数是(  )
A.1B.2C.$\frac{3}{2}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在两个学习基础相当的班级实行某种教学措施的实验,测试结果见表,则实验效果与教学措施(  )
优、良、中总计
实验班48250
对比班381250
总计8614100
A.有关B.无关C.关系不明确D.以上都不正确

查看答案和解析>>

同步练习册答案