精英家教网 > 高中数学 > 题目详情
8.已知5件产品中有2件次品,现逐一检测,直至能确定所有次品为止,记检测的次数为ξ,则Eξ=(  )
A.3B.$\frac{7}{2}$C.$\frac{18}{5}$D.4

分析 由题意知ξ的可能取值为2,3,4,分别求出相应的概率,由此能求出Eξ.

解答 解:由题意知ξ的可能取值为2,3,4,
P(ξ=2)=$\frac{2}{5}×\frac{1}{4}$=$\frac{1}{10}$,
P(ξ=3)=$\frac{2}{5}×\frac{3}{4}×\frac{1}{3}$+$\frac{3}{5}×\frac{2}{4}×\frac{1}{3}$+$\frac{3}{5}×\frac{2}{4}×\frac{1}{3}$=$\frac{3}{10}$,
P(ξ=4)=1-$\frac{1}{10}-\frac{3}{10}$=$\frac{6}{10}$,
∴Eξ=$2×\frac{1}{10}+3×\frac{3}{10}+4×\frac{6}{10}$=$\frac{7}{2}$.
故选:B.

点评 本题离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意相互独立事件概率乘法公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.甲、乙两名同学参加一项射击游戏,两人约定,其中任何一人毎射击一次,击中目标得2分,未击中目标得0分,若甲、乙两名同学射击的命中率分别为$\frac{2}{5}$和p,且甲、乙两人各射击一次所得分数之和为2的概率为$\frac{9}{20}$,假设甲、乙两人射击互不影响.
(1)若乙射击两次,求其得分为2的概率;
(2)记甲、乙两人各射击一次所得分数之和为X,求X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知i为虚数单位,复数z满足z(1+i)=3-i,则z的实部为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数f(x)=ex-ax2-ex+b,其中e为自然对数的底数.
(Ⅰ)若曲线f(x)在y轴上的截距为-1,且在点x=1处的切线垂直于直线y=$\frac{1}{2}$x,求实数a,b的值;
(Ⅱ)记f(x)的导函数为g(x),g(x)在区间[0,1]上的最小值为h(a),求h(a)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.一张半径为4的圆形纸片的圆心为F1,F2是圆内一个定点,且F1F2=2,P是圆上一个动点,把纸片折叠使得F2与P重合,然后抹平纸片,折痕为CD,设CD与半径PF1的交点为Q,当P在圆上运动时,则Q点的轨迹为曲线E,以F1F2所在直线x为轴,F1F2的中垂线为y轴建立平面直角坐标系,如图.
(1)求曲线E的方程;
(2)曲线E与x轴的交点为A1,A2(A1在A2左侧),与x轴不重合的动直线l过点F2且与E交于M、N两点(其中M在x轴上方),设直线A1M、A2N交于点T,求证:动点T恒在定直线l′上,并求l′的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知数列{an}的前n项和为Sn,且Sn=n-5an+23,n∈N*,则数列{an}的通项公式an=(  )
A.$3×{(\frac{5}{6})^{n-1}}-1$B.$3×{(\frac{5}{6})^n}-1$C.$3×{(\frac{5}{6})^{n-1}}+1$D.$3×{(\frac{5}{6})^n}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=|sinx|(x∈[-π,π]),g(x)为[-4,4]上的奇函数,且$g(x)=\left\{{\begin{array}{l}{-2x(0<x≤2)}\\{4x-12(2<x≤4)}\end{array}}\right.$,设方程f(f(x))=0,f(g(x))=0,g(g(x))=0的实根的个数分别为m、n、t,则m+n+t=(  )
A.9B.13C.17D.21

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$\frac{7π}{3}$B.$8+\frac{π}{3}$C.$({4+\sqrt{2}})π$D.$({5+\sqrt{2}})π$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若等腰△ABC的周长为$4\sqrt{2}$,则△ABC腰AB上的中线CD的长的最小值是$\frac{4}{3}$.

查看答案和解析>>

同步练习册答案