分析 (Ⅰ)将(0,-1),代入f(x),即可求得b的值,求导,由f′(1)=-2,即可求得a的值;
(Ⅱ)求导,g′(x)=ex-2a,分类分别取得g(x)在区间[0,1]上的最小值h(a)解析式,根据函数的单调性即可求得h(a)的最大值.
解答 解:(Ⅰ)曲线f(x)在y轴上的截距为-1,则过点(0,-1),代入f(x)=ex-ax2-ex+b,
则1+b=-1,则b=-2,求导f′(x)=ex-2ax-e,
由f′(1)=-2,即e-2a-e=-2,则a=1,
∴实数a,b的值分别为1,-2;
(Ⅱ)f(x)=ex-ax2-ex+b,g(x)=f′(x)=ex-2ax-e,g′(x)=ex-2a,
(1)当a≤$\frac{1}{2}$时,∵x∈[0,1],1≤ex≤e,∴2a≤ex恒成立,
即g′(x)=ex-2a≥0,g(x)在[0,1]上单调递增,
∴g(x)≥g(0)=1-e.
(2)当a>$\frac{e}{2}$时,∵x∈[0,1],1≤ex≤e,∴2a>ex恒成立,
即g′(x)=ex-2a<0,g(x)在[0,1]上单调递减,
∴g(x)≥g(1)=-2a
(3)当$\frac{1}{2}$<a≤$\frac{e}{2}$时,g′(x)=ex-2a=0,得x=ln(2a),
g(x)在[0,ln2a]上单调递减,在[ln2a,1]上单调递增,
所以g(x)≥g(ln2a)=2a-2aln2a-e,
∴h(a)=$\left\{\begin{array}{l}{1-e}&{a≤\frac{1}{2}}\\{2a-2aln2a-e}&{\frac{1}{2}≤a≤\frac{e}{2}}\\{-2a}&{a>\frac{e}{2}}\end{array}\right.$,
∴当a≤$\frac{1}{2}$时,h(a)=1-e,
当$\frac{1}{2}$<a≤$\frac{e}{2}$时,h(a)=2a-2aln2a-e,求导,h′(a)=2-2ln2a-2=2ln2a,
由$\frac{1}{2}$<a≤$\frac{e}{2}$时,h′(a)<0,
∴h(a)单调递减,h(a)∈(1-e,-e],
当a>$\frac{e}{2}$时,h(a)=-2a,单调递减,h(a)∈(-∞,-e),
h(a)的最大值1-e.
点评 本题考查导数的综合应用,考查导数与函数单调性的关系,函数的最值的求法,考查计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 108种 | B. | 102种 | C. | 18种 | D. | 20种 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 班级 | 高三(1) | 高三(2) | 高三(3) |
| 人数 | 3 | 3 | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\frac{7}{2}$ | C. | $\frac{18}{5}$ | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com