精英家教网 > 高中数学 > 题目详情
15.①已知sin($\frac{7}{2}π$-α)=-$\frac{1}{2}$,求sin2($\frac{9}{2}$π-α)+cos(3π-α)的值;
②化简:$\frac{{sin(α-\frac{π}{2})cos(\frac{3}{2}π+α)tan(π-α)}}{tan(-π-α)sin(-π-α)}$.

分析 (1)利用诱导公式得到cosα=$\frac{1}{2}$.然后由诱导公式化简所求的代数式并代入求值即可;
(2)利用诱导公式分别对分子、分母进行化简,然后约分即可.

解答 解:(1)由$sin(\frac{7}{2}π-α)=-\frac{1}{2}$得,cosα=$\frac{1}{2}$.
${sin^2}(\frac{9}{2}π-α)+cos(3π-α)$=cos2α-cosα=$-\frac{1}{4}$;
(2)$\frac{{sin(α-\frac{π}{2})cos(\frac{3}{2}π+α)tan(π-α)}}{tan(-π-α)sin(-π-α)}$,
=$\frac{{({-cosα})sinα({-tanα})}}{{({-tanα})sinα}}$,
=-cosα.

点评 本题考查了三角函数的化简求值.化简时要看“结构特征”,分析结构特征,可以帮助我们找到变形的方向,常见的有“遇到分式要通分”等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.给出下列命题:
①从2004名学生中抽取50名组成参观团,先用简单随机抽样从2 004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率相等.
②某单位有职工52人,现将所有职工按l、2、3、…、52随机编号,现采用系统抽样的方法抽取一个容量为4的样本.已知6号、32号、45号职工在样本中,则样本中另外一个职工的编号是19号.
③某社区有600户家庭,其中高收入家庭150户,中等收入家庭360户,低收入家庭90户.为了调查购买力的某项指标,用分层抽样的方法从中抽取一个容量为100的样本,则中等收入家庭应抽取60户.
④已知数据x1,x2,…,xn的方差s2=4,则数据-3x1+5,-3x2+5,…,-3xn+5的标准差为6.
其中正确结论的序号是①②③④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知点$M({\sqrt{2},1})$,点N在圆O:x2+y2=1上,则∠OMN的最大值为(  )
A.$\frac{π}{2}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知△ABC的内角B满足2cos2B-8cosB+5=0,若$\overrightarrow{BC}$=$\overrightarrow a$,$\overrightarrow{CA}$=$\overrightarrow b$且$\overrightarrow a$,$\overrightarrow b$满足:$\overrightarrow a$•$\overrightarrow b$=-9,|$\overrightarrow a$|=3,|$\overrightarrow b$|=5,θ为$\overrightarrow a$,$\overrightarrow b$的夹角.
(1)求角B大小;
(2)求sin(B+θ).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{f'(1)}{e}•{e^x}-f(0)•x+\frac{1}{2}{x^2}(e$是自然对数的底数).
(Ⅰ)求函数f(x)的解析式
(Ⅱ)求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P($-\frac{3}{5}$,$\frac{4}{5}$)是此角与单位圆的交点,cos θ=$-\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知随机变量X服从二项分布B(4,$\frac{1}{2}$),则D(3X+1)=(  )
A.3B.4C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=2x-$\frac{1}{{2}^{|x|}}$,x∈[-1,2].
(1)若f(x)=$\frac{3}{2}$,求x值;
(2)求函数f(x)的单调区间;
(3)求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.计算下列各式的值
(1)已知sinα是方程5x2-7x-6=0的根,α是第三象限角,则计算$\frac{{sin(-α-\frac{3}{2}π)cos(\frac{3}{2}π-α)}}{{cos(\frac{π}{2}-α)sin(\frac{π}{2}+α)}}$•tan2(π-α);
(2)$\frac{\sqrt{1-2sin40°cos40°}}{cos40°-\sqrt{1-si{n}^{2}50°}}$.

查看答案和解析>>

同步练习册答案