精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对边分别为a,b,c,且1+
tanA
tanB
=
2c
b

(1)求角A;
(2)已知a=
7
2
,△ABC的面积S=
3
3
2
,求b+c的值.
分析:(1)先根据正弦定理把
2c
b
换成
2sinC
sinB
,再把等式左边的正切换成正弦,在根据两角和公式化简整理可得cosA,进而求得A.
(2)由三角形的面积公式可求得bc的值,再把bc代入余弦定理中进而可解b+c的值.
解答:解:(1)1+
tanA
tanB
=
2c
b
?1+
sinAcosB
sinBcosA
=
2sinC
sinB

sinBcosA+sinAcosB
sinBcosA
=
2sinC
sinB

sin(A+B)
sinBcosA
=
2sinC
sinB
,∴cosA=
1
2
.∵0<A<π,
A=
π
3

(2)由余弦定理及三角形面积公式得
a2=b2+c2-2bccosA
S=
1
2
bcsinA
?
49
4
=b2+c2-bc
3
2
3
=
1
2
bc×
3
2
?(b+c)2=
121
4
?b+c=
11
2
点评:本题主要考查三角形中的几何计算.常涉及正弦定理、余弦定理和面积公式等常用公式,故应熟练记忆.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案