分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极值即可;
(2)求出a的值,问题转化为x2-2tlnx-2tx=0(x>0)有唯一解,设G(x)=x2-2tlnx-2tx=0(x>0),根据函数的单调性求出G(x)的极小值,从而求出t的范围即可.
解答 解:(1)$f'(x)=\frac{x-2xlnx}{x^4}=\frac{1-2lnx}{x^3}$.…(2分)
由f'(x)=0得$x=\sqrt{e}$,…(3分)
| x | $(0,\sqrt{e})$ | $\sqrt{e}$ | $(\sqrt{e},+∞)$ |
| f'(x) | + | 0 | - |
| f(x) | 递增 | 极大值 | 递减 |
点评 本题考查了函数的单调性、极值、最值问题,考查导数的应用以及函数恒成立问题,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 3$\sqrt{2}$ | C. | 2$\sqrt{2}$-2 | D. | 3$\sqrt{2}$-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (x-2)2+y2=1 | B. | (x+2)2+y2=1 | C. | (x-2)2+y2=4 | D. | x2+(y-2)2=4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com