| A. | 2$\sqrt{2}$ | B. | 3$\sqrt{2}$ | C. | 2$\sqrt{2}$-2 | D. | 3$\sqrt{2}$-2 |
分析 先求出y关于x的解析式,再根据基本不等式即可求出答案.
解答 解:当P在BC上时,即1<x<2,y=PA=$\sqrt{1+(x-1)^{2}}$;
则(x-1)2+1=y2,y>1,
所以$\frac{{y}^{2}}{x}$=$\frac{(x-1)^{2}+1}{x}$=$\frac{{x}^{2}-2x+2}{x}$=x+$\frac{2}{x}$-2≥2$\sqrt{x•\frac{2}{x}}$-2=2$\sqrt{2}$-2,当且仅当x=$\sqrt{2}$时取等号,
所以$\frac{y^2}{x}$的最小值为2$\sqrt{2}$-2,
故选:C.
点评 本题的考点是函数解析式的求法以及函数的简单应用,以及基本不等式,属于基础题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {2} | B. | {4} | C. | {1,3} | D. | {2,4} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (${\frac{1}{x}}$)′=-$\frac{1}{x^2}$ | B. | (ax)=axlna | C. | (lnx)′=$\frac{1}{x}$ | D. | (sinx)′=-cosx |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com