精英家教网 > 高中数学 > 题目详情
圆x2+y2-4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的和是
 
考点:直线与圆相交的性质
专题:直线与圆
分析:把圆的方程化为标准方程,找出圆心坐标和圆的半径,过圆心M作已知直线的垂线,与圆分别交于A和B点,垂足为C,由图形可知|AC|为圆上点到已知直线的最大距离,|BC|为圆上点到已知直线的最小距离,由此能求出最大距离与最小距离之和.
解答: 解:把圆的方程化为标准方程,得(x-2)2+(y-2)2=18,
∴圆心M的坐标为(2,2),半径|AM|=|BM|=
18
=3
2

过M作出直线x+y-14=0的垂线,与圆M交于A,B两点,垂足为C,
如图所示,
由图形知,|AC|为圆上的点到直线x+y-14=0的最大距离,
|BC|为圆上的点到直线x+y-14=0的最小距离,
∵|MC|=
|2+2-14|
2
=5
2

∴|AC|+|BC|=(5
2
+3
2
)+(5
2
-3
2
)=10
2

故答案为:10
2
点评:本题考查圆上的点到直线的最大距离和最小距离之和的求法,解题时要注意数形结合思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一中食堂有一个面食窗口,假设学生买饭所需的时间互相独立,且都是整数分钟,对以往学生买饭所需的时间统计结果如下:
买饭时间(分) 1 2 3 4 5
频率 0.1 0.4 0.3 0.1 0.1
从第一个学生开始买饭时计时.
(理科)(1)估计第三个学生恰好等待4分钟开始买饭的概率;
       (2)X表示至第2分钟末已买完饭的人数,求X的分布列及数学期望.
(文科)(1)求第2分钟末没有人买晚饭的概率;
       (2)估计第三个学生恰好等待4分钟开始买饭的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线x=0,y=0,x=2与曲线y=
4-x2
所围成的图形绕x轴旋转一周而成的旋转体的体积等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)直角△ABC的两条直角边长分别为3,4,若将该三角形绕着斜边旋转一周所得的几何体的体积是V,则V=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(平面几何选做题)
已知AB为半圆O的直径,AB=4,C为半圆上一点,过点C作半圆的切线CD,过点A作AD⊥CD于D,交半圆O于点E,DE=1,则BC的长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示:AB是半径为1的圆O的直径,BC,CD是圆O的切线,B,D为切点,若∠ABD=30°,则AD•OC的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

sin
7
6
π
+cos(-
π
3
)+tan(
4
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是R上的奇函数,对于x∈R,都有f(x+4)=f(x)+f(2)成立,若f(1)=2,则f(2013)等于(  )
A、0B、2C、2014D、-2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z=(x-1)+(2x-1)i的模小于
10
,则实数x的取值范围是(  )
A、-
4
5
<x<2
B、x<2
C、x>-
4
5
D、x>2或x<-
4
5

查看答案和解析>>

同步练习册答案