| A. | 0<a<1 | B. | 0<a≤2 | C. | 1≤a≤2 | D. | 0≤a≤2 |
分析 先求出函数f(x)的最小,正好为了说明[0,a]包含对称轴,当x=0时 y=3,根据对称性可知当x=2时 y=3,结合二次函数的图象可求出a的范围.
解答
解:∵函数f(x)=x2-2x+3是开口向上的抛物线,对称轴 x=1,
当 x=1时函数取得最小值 f(1)=1-2+3=2,
∵y=x2-2x+3在[0,a]上最小值为2,∴a≥1;
当x=0时 y=3 函数y=x2-2x+3在(1,+∞)上是增函数,
当x=2时 y=4-4+3=3,当x>2时 y>3,
∵函数y=x2-2x+3在[0,a]上最大值为3,
∴a≤2 综上所述 1≤a≤2.
故选:C.
点评 二次函数是最常见的函数模型之一,也是最熟悉的函数模型,解决此类问题要充分利用二次函数的性质和图象.
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{2}+\sqrt{6}}{4}$ | B. | -$\frac{1}{2}$ | C. | $\frac{\sqrt{2}-\sqrt{6}}{4}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | $\frac{1}{4}$ | C. | 8 | D. | $\frac{1}{8}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com