精英家教网 > 高中数学 > 题目详情
19.已知f(x)=2sin(2x+$\frac{π}{6}$)+a+1(a为常数).
(1)求f(x)的单调递增区间;
(2)若当x∈[0,$\frac{π}{2}$]时,f(x)的最大值为4,求a的值;
(3)求出f(x)的对称轴.

分析 (1)由题意利用正弦函数的单调性,求得f(x)的单调递增区间.
(2)由题意利用正弦函数的定义域和值域,求得f(x)在[0,$\frac{π}{2}$]上的最大值,再根据最大值为4,求得a的值.
(3)由题意利用正弦函数的图象的对称性,求得f(x)的图象的对称轴.

解答 解:(1)对于f(x)=2sin(2x+$\frac{π}{6}$)+a+1,令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
可得f(x)的单调递增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.
(2)若当x∈[0,$\frac{π}{2}$]时,2x+$\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$],故当2x+$\frac{π}{6}$=$\frac{π}{2}$时,f(x)的最大值为2+a+1=4,∴a=1.
(3)令2x+$\frac{π}{6}$=kπ+$\frac{π}{2}$,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,可得f(x)的对称轴方程为x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z.

点评 本题主要考查正弦函数的单调性、图象的对称性,定义域和值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+ax2+bx(a,b∈R)的图象在点(1,f(1))处的切线方程为4x-y-2=0.
(I)求a,b的值,
(II)判断函数f(x)的单调性;
(Ⅲ)若函数g(x)=$\frac{f(x)}{x+1}$-x在区间[t,+∞)(t∈N*)内存在极值,求t的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线y2-$\frac{x^2}{a^2}$=1(a>0)的渐进线与圆(x-1)2+y2=$\frac{3}{4}$相切,则a=(  )
A.$\frac{{\sqrt{5}}}{5}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{5}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数y=x2-2x+3在[0,a](a>0)上最大值是3,最小值是2,则实数a的取值范围是(  )
A.0<a<1B.0<a≤2C.1≤a≤2D.0≤a≤2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知正项等比数列{an}中,a1a5=9,S3=$\frac{21}{4}$,则log2a10的值为(  )
A.8B.8+log23C.9+log23D.7+log23

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在(1+x)+(1+x)2+…+(1+x)5的展开式中,x2项的系数是20(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=a(x2+1).若对任意a∈(-4,-2)及x∈[1,3]时,恒有ma-f(x)>a2+lnx成立,则实数m的取值范围为(  )
A.m≤2B.m<2C.m≤-2D.m<-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.下列说法中正确的是④⑤.(填上所有正确的序号)
①如果b=$\sqrt{ac}$,那么数列a,b,c是等比数列;
②数列{an}的前n项和为Sn=3n2+n+1,则该数列的通项公式an=6n-2(n∈N*);
③等比数列a,a2,…,an,…的前n项和为Sn=$\frac{{a(1-{a^n})}}{1-a}$;
④若数列{an}为公差不为零的等差数列,则数列{an}中不存在p,q(p≠q)使得ap=aq
⑤等差数列{an}的前n项和为Sn,若S10=5,S20=25,则S30=60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{16}$=1(a>0)的渐近线方程是y=±$\frac{4}{3}$x,则其准线方程为x=±$\frac{9}{5}$.

查看答案和解析>>

同步练习册答案