精英家教网 > 高中数学 > 题目详情
2.函数y=$\frac{1}{{x}^{3}}$的单调递减区间是(  )
A.(-∞,+∞)B.(-∞,0),(0,+∞)C.(-∞,0)D.(0,+∞)

分析 根据幂函数的图象和性质分析函数的奇偶性,定义域和在(0,+∞)上的单调性,进而得到答案.

解答 解:函数y=$\frac{1}{{x}^{3}}$=x-3为奇函数,其定义域为:(-∞,0)∪(0,+∞),
由-3<0可得:函数y=$\frac{1}{{x}^{3}}$在区间(0,+∞)上为减函数,
则函数y=$\frac{1}{{x}^{3}}$在区间(-∞,0)上也为减函数,
故函数y=$\frac{1}{{x}^{3}}$的单调递减区间是(-∞,0),(0,+∞),
故选:B.

点评 本题考查的知识点是幂函数的图象和性质,熟练掌握幂函数的图象和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.若f(x)同时关于x=a,x=b对称(a<b),则函数f(x)的一个周期是2(b-a).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知x1,x2是方程x2+3x+1=0的两个根,求代数式$\root{3}{{{x}_{1}}^{3}+8{x}_{2}+20}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,a1=2,an+1=2an2.又bn=log2an
(1)求证:数列{bn+1}是等比数列;
(2)设cn=nbn,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.如图所示,四边形ABCD为正方形,PA⊥平面ABCD,则在平面PAB,平面PAD,平面PCD,平面PBC及平面ABCD中,互相垂直的有(  )
A.3对B.4对C.5对D.6对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设数列(an}的前n项和为Sn,如果an=$\frac{1}{(2n-1)(2n+1)}$,那么S5等于(  )
A.$\frac{1}{2}$B.$\frac{5}{11}$C.$\frac{4}{9}$D.$\frac{5}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知θ是第四象限角,则sin(sinθ)(  )
A.大于0B.大于等于0C.小于0D.小于等于0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知A(-2,-3),B(3,1),直线l:y=kx+1与线段AB相交,则k取值范围为(-∞,0]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求以下函数的定义域:
(1)y=$\sqrt{x-1}$+$\frac{1}{{x}^{2}-3x+2}$;
(2)y=lg$\frac{1+x}{1-x}$.

查看答案和解析>>

同步练习册答案