精英家教网 > 高中数学 > 题目详情

【题目】随机变量的概率分布规律为其中是常数,则的值为( )
A.
B.
C.
D.

【答案】D
【解析】根据题意,由于 , 那么可知,时,则可得概率和为1,即 ,那么可知="P(X=1)+P(X=2)=" ,故选D.
【考点精析】认真审题,首先需要了解离散型随机变量及其分布列(在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方向,从该校四个年级的本科生中抽取一个容量为300的样本进行调查,已知该校一年级、二年级、三年级、四年级的本科生人数之比为4:5:5:6,则应从一年级本科生中抽取名学生.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列{an}的公差为d,点(an , bn)在函数f(x)=2x的图象上(n∈N*).
(1)若a1=﹣2,点(a8 , 4b7)在函数f(x)的图象上,求数列{an}的前n项和Sn
(2)若a1=1,函数f(x)的图象在点(a2 , b2)处的切线在x轴上的截距为2﹣ ,求数列{ }的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论正确的是( )

A. 函数在区间上的图像是连续不断的一条曲线,若,则函数在区间内无零点

B. 函数在区间上的图像是连续不断的一条曲线,若,则函数在区间内可能有零点,且零点个数为偶数

C. 函数在区间上的图像是连续不断的一条曲线,若,则函数在区间内必有零点,且零点个数为奇数

D. 函数在区间上的图像是连续不断的一条曲线,若,则函数在区间内必有零点,但是零点个数不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】说明:请考生在(A)、(B)两个小题中任选一题作答。

A)已知函数

(1)求的零点;

(2)若有三个零点,求实数的取值范围.

B)已知函数

(1)求的零点;

(2)若有4个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为评估设备M生产某种零件的性能,从设备M生产零件的流水线上随机抽取100件零件最为样本,测量其直径后,整理得到下表:

直径/mm

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值μ=65,标准差=2.2,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为X,并根据以下不等式进行评判(p表示相应事件的频率):①p(μ﹣σ<X≤μ+σ)≥0.6826.②P(μ﹣σ<X≤μ+2σ)≥0.9544③P(μ﹣3σ<X≤μ+3σ)≥0.9974.评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙,若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁.试判断设备M的性能等级.
(2)将直径小于等于μ﹣2σ或直径大于μ+2σ的零件认为是次品
(i)从设备M的生产流水线上随意抽取2件零件,计算其中次品个数Y的数学期望EY;
(ii)从样本中随意抽取2件零件,计算其中次品个数Z的数学期望EZ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,. 现从这10人中随机选出2人作为该组代表参加座谈会.
(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
(2)设 为选出的2人参加义工活动次数之差的绝对值,求随机变量 的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数).

(1)求函数的单调区间;

(2)设函数,存在实数 ,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:数列{an}中, =n,a2=6,n∈N+
(1)求a1 , a3 , a4
(2)猜想an的表达式并给出证明;
(3)记:Sn= + +…+ ,证明:Sn

查看答案和解析>>

同步练习册答案