精英家教网 > 高中数学 > 题目详情

【题目】从盛满2升纯酒精的容器里倒出1升,然后加满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒次后才能使纯酒精体积与总溶液的体积之比低于10%.

【答案】4
【解析】解:设开始的浓度为1,操作1次后的浓度为a1=1﹣ ,操作n次后的浓度为an , 则an+1=an(1﹣ ),
∴数列{an}构成a1=1﹣ 为首项,q=1﹣ 为公比的等比数列,
∴an=(1﹣ n , 即第n次操作后溶液的浓度为(1﹣ n
当a=2时,可得an=(1﹣ n= ,由an=( n ,解得n>4.
∴至少应倒4次后才能使酒精的浓度低于10%.
所以答案是:4.
【考点精析】解答此题的关键在于理解等比数列的通项公式(及其变式)的相关知识,掌握通项公式:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=8x的准线与双曲线 =1(a>0,b>0)相交于A、B两点,双曲线的一条渐近线方程是y= x,点F是抛物线的焦点,且△FAB是等边三角形,则该双曲线的标准方程是(
A. =1
B. =1
C. =1
D. =1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且b=,cosAsinB+(c﹣sinA)cos(A+C)=0.

(1)求角B的大小;

(2)若△ABC的面积为,求sinA+sinC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用红、黄、蓝三种不同颜色给图中3个矩形随机涂色,每个矩形只涂一种颜色,求:
(1)3个矩形颜色都相同的概率;
(2)3个矩形颜色都不同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有4个编号依次为1、2、3、4的球,这4个球除号码外完全相同,先从盒子中随机取一个球,该球的编号为X,将球放回袋中,然后再从袋中随机取一个球,该球的编号为Y
(1)列出所有可能结果.
(2)求事件A=“取出球的号码之和小于4”的概率.
(3)求事件B=“编号X<Y”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为.

(Ⅰ)求比赛三局甲获胜的概率;

(Ⅱ)求甲获胜的概率;

(Ⅲ)设甲比赛的次数为,求的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像与直线相切.

Ⅰ)求的值,并求的单调区间;

Ⅱ)若,设,讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省高考改革实施方案指出:该省高考考生总成绩将由语文、数学、外语3门统一高考成绩和学生自主选择的学业水平等级性考试科目共同构成,该省教育厅为了解正在读高中的学生家长对高考改革方案所持的赞成态度,随机从中抽取了100名城乡家长作为样本进行调查,调查结果显示样本中有25人持不赞成意见,如图是根据样本的调查结果绘制的等高条形图.

(1)根据已知条件与等高条形图完成下面的列联表,并判断我们能否有95%的把握认为“赞成高考改革方案与城乡户口有关”?

注:,其中.

(2)用样本的频率估计概率,若随机在全省不赞成高考改革的家长中抽取3个,记这3个家长中是城镇户口的人数为,试求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】直线l与两直线y=1,x﹣y﹣7=0分别交于A,B两点,若直线AB的中点是M(1,﹣1),则直线l的斜率为

查看答案和解析>>

同步练习册答案