精英家教网 > 高中数学 > 题目详情

【题目】已知函数的图像与直线相切.

Ⅰ)求的值,并求的单调区间;

Ⅱ)若,设,讨论函数的零点个数.

【答案】(Ⅰ) 函数的单调减区间为增区间为 (Ⅱ)答案见解析.

【解析】试题分析:

()由题意结合导函数与原函数切线的关系得到关于实数m的方程,解方程可得m=1,则函数的单调减区间为,增区间为

()原问题转化为函数的图象的交点个数,分类讨论可得:

函数无零点;

时,函数恰有一个零点;

时,函数恰有两个零点.

试题解析:

(I)的图像与直线相切于点

解得:

所以函数的单调减区间为;增区间为

(II)

记函数

上单调递增;在上单调递减

时,

时,;且.

则:当 的图像无交点,函数无零点;

时, 的图像恰有一个交点,函数恰有一个零点;

时, 的图像恰有两个交点,函数恰有两个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C的对边分别为a,b,c,且bsinA=asin2B.
(Ⅰ)求角B;
(Ⅱ)若b= ,a+c=ac,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=lnx+ax2+x+1.

(I)a=﹣2时,求函数f(x)的极值点;

(Ⅱ)当a=0时,证明xex≥f(x)在(0,+∞)上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从盛满2升纯酒精的容器里倒出1升,然后加满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒次后才能使纯酒精体积与总溶液的体积之比低于10%.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)当时,求的单调区间;

(2)当时, 恒成立,求的取值范围;

(3)求证:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求曲线在点处的切线;

2)若函数在其定义域内为增函数,求正实数的取值范围;

3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】私家车的尾气排放是造成雾霾天气的重要因素之一,因此在生活中我们应该提倡低碳生活,少开私家车,尽量选择绿色出行方式,为预防雾霾出一份力.为此,很多城市实施了机动车车尾号限行,我市某报社为了解市区公众对车辆限行的态度,随机抽查了50人,将调查情况进行整理后制成下表:

)完成被调查人员的频率分布直方图;

)若从年龄在[1525),[2535)的被调查者中各随机选取2人进行追踪调查,求恰有2人不赞成的概率;

)在()的条件下,再记选中的4人中不赞成车辆限行的人数为,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】广场舞是现代城市群众文化、娱乐发展的产物,也是城市精神文明建设成果的一个重要象征.2016年某校社会实践小组对某小区广场舞的开展状况进行了年龄的调查,随机抽取了40名广场舞者进行调查,将他们年龄分成6段:后得到如图所示的频率分布直方图.

(l)计算这40名广场舞者中年龄分布在的人数;

(2)若从年龄在中的广场舞者任取2名,求这两名广场舞者中恰有一人年龄在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=f(x)的导数y′=f′(x)仍是x的函数,就把y′=f′(x)的导数y″=f″(x)叫做函数y=f(x)二阶导数,记做y2=f2(x).同样函数y=f(x)的n﹣1阶导数的导数叫做y=f(x)的n阶导数,表示yn=fn(x).在求y=ln(x+1)的n阶导数时,已求得 ,根据以上推理,函数y=ln(x+1)的第n阶导数为

查看答案和解析>>

同步练习册答案