精英家教网 > 高中数学 > 题目详情

【题目】某次乒乓球比赛的决赛在甲乙两名选手之间举行,比赛采用五局三胜制,按以往比赛经验,甲胜乙的概率为.

(Ⅰ)求比赛三局甲获胜的概率;

(Ⅱ)求甲获胜的概率;

(Ⅲ)设甲比赛的次数为,求的数学期望.

【答案】(Ⅰ) ;(Ⅱ) ;(Ⅲ) .

【解析】试题分析:

()由概率公式可得比赛三局甲获胜的概率是

()计算可得比赛四局甲获胜的概率是比赛五局甲获胜的概率是则甲获胜的概率是.

()很明显X可能的取值为3,4,5计算求得相应的概率值即可确定分布列,然后由分布列计算可得的数学期望是.

试题解析:

记甲局获胜的概率为

Ⅰ)比赛三局甲获胜的概率是:

Ⅱ)比赛四局甲获胜的概率是:

比赛五局甲获胜的概率是:

甲获胜的概率是: .

Ⅲ)记乙局获胜的概率为 .

故甲比赛次数的分布列为:

3

4

5

所以甲比赛次数的数学期望是:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】分别根据下列条件,求圆的方程:
(1)过两点(0,4),(4,6),且圆心在直线x﹣2y﹣2=0上;
(2)半径为 ,且与直线2x+3y﹣10=0切于点(2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机床厂今年初用98万元购进一台数控机床,并立即投入使用,计划第一年维修、保养费用12万元,从第二年开始,每年的维修、保养修费用比上一年增加4万元,该机床使用后,每年的总收入为50万元,设使用x年后数控机床的盈利总额y元.
(1)写出y与x之间的函数关系式;
(2)从第几年开始,该机床开始盈利?
(3)使用若干年后,对机床的处理有两种方案:①当年平均盈利额达到最大值时,以30万元价格处理该机床;②当盈利额达到最大值时,以12万元价格处理该机床.问哪种方案处理较为合理?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn,对任意的正整数n,都有Sn=an+n﹣3成立.

(Ⅰ)求证:{an﹣1}为等比数列;

(Ⅱ)求数列{nan}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从盛满2升纯酒精的容器里倒出1升,然后加满水,再倒出1升混合溶液后又用水填满,以此继续下去,则至少应倒次后才能使纯酒精体积与总溶液的体积之比低于10%.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班20名同学某次数学测试的成绩可绘制成如下茎叶图,由于其中部分数据缺失,故打算根据茎叶图中的数据估计全班同学的平均成绩.

(1)完成频率分布直方图;

(2)根据(1)中的频率分布直方图估计全班同学的平均成绩 (同一组中的数据用该组区间的中点值作代表);

(3)设根据茎叶图计算出的全班的平均成绩为,并假设,且各自取得每一个可能值的机会相等,在(2)的条件下,求概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若,求曲线在点处的切线;

2)若函数在其定义域内为增函数,求正实数的取值范围;

3)设函数,若在上至少存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD是边长2的正方形,E,F分别为线段DD1 , BD的中点.
(1)求证:EF∥平面ABC1D1
(2)AA1=2 ,求异面直线EF与BC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左右焦点,为原点, 在椭圆上,线段轴的交点满足.

(1)求椭圆的标准方程;

(2)过椭圆右焦点作直线交椭圆于两点,交轴于点,若,求.

查看答案和解析>>

同步练习册答案