精英家教网 > 高中数学 > 题目详情
已知p:|x-a|<4;q:(x-2)(x-3)<0,若¬p是¬q的充分不必要条件,求a的取值范围.
考点:必要条件、充分条件与充要条件的判断
专题:简易逻辑
分析:求出命题p,q的等价条件,利用¬p是¬q的充分不必要条件,转化为q是p的充分不必要条件,即可求出a的取值范围.
解答: 解:∵|x-a|<4,
∴a-4<x<a+4,
即p:a-4<x<a+4,
∵(x-2)(x-3)<0,
∴2<x<3,
即q:2<x<3.
∵¬p是¬q的充分不必要条件,
∴q是p的充分不必要条件,
a+4≥3
a-4≤2
,(等号不能同时取得),
a≥-1
a≤6

∴-1≤a≤6,
即a的取值范围是-1≤a≤6.
点评:本题主要考查充分条件和必要条件的应用,利用不等式的解法求出等价条件是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知2013年2月10日春节.某蔬菜基地2013年2月2日有一批黄瓜进入市场销售,通过市场调查,预测黄瓜的价格f(x)(单位:元/kg)与时间x(x表示距2月10日的天数,单位:天,x∈(0,8]且x∈N*)的数据如下表:
时间x862
价格f(x)8420
(Ⅰ)根据上表数据,从下列函数中选取一个函数描述黄瓜价格f(x)与上市时间x的变化关系:f(x)=
ax+b,f(x)=ax2+bx+c,f(x)=a•bx,其中a≠0;并求出此函数;
(Ⅱ)在日常生活中,黄瓜的价格除了与上市日期相关,与供给量也密不可分.已知供给量h(x)=
1
3
x-
5
18
(x∈N*).在供给量的限定下,黄瓜实际价格g(x)=f(x)•h(x).求黄瓜实际价格g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点是F1(-2
2
,0),F2(2
2
,0),其上的动点P满足|PF1|+|PF2|=4
3
.点O为坐标原点,椭圆C的下顶点为R.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ) 设直线l1:y=x+2与椭圆C的交于A,B两点,求过O,A,B三点的圆的方程;
(Ⅲ)设过点(0,1)且斜率为k的直线l2交椭圆C于M,N两点,试证明:无论k取何值时,
RM
RN
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意x∈R都有f(x)+f(1-x)=
1
2

(1)求f(
1
2
),f(
1
n
)+f(
n-1
n
)(n∈N*)的值;
(2)若数列{an}满足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),那么数列{an}是等差数列吗?试证之;
(3)在(2)的条件下,设bn=4an-1,cn=bnqn-1(q≠0,n∈N*)求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知sinα=2cosα,求
sinα-4cosα
5sinα+2cosα
及sin2α+2sinαcosα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并与圆N内切,圆心P的轨迹为曲线 C
(1)求C的方程;
(2)直线l是过曲线C的右焦点,且斜率为2的直线,该直线与曲线C相交于A、B两点,求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)的导数f′(x)=3x2-2(a+1)x+a-2,且f(0)=2a,当a>2时,求不等式f(x)<0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

一条斜率为1的直线l与离心率为
3
的双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)交于P、Q两点,直线l与y轴交于R点,且
OP
OQ
=-3,
PR
=3
RQ
,求直线与双曲线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

求经过两条直线3x+4y-5=0与2x-3y+8=0的交点M,且平行于直线2x+y+5=0的直线方程.(结果写一般方程形式)

查看答案和解析>>

同步练习册答案