精英家教网 > 高中数学 > 题目详情
已知椭圆C的焦点是F1(-2
2
,0),F2(2
2
,0),其上的动点P满足|PF1|+|PF2|=4
3
.点O为坐标原点,椭圆C的下顶点为R.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ) 设直线l1:y=x+2与椭圆C的交于A,B两点,求过O,A,B三点的圆的方程;
(Ⅲ)设过点(0,1)且斜率为k的直线l2交椭圆C于M,N两点,试证明:无论k取何值时,
RM
RN
恒为定值.
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(Ⅰ)由|PF1|+|PF2|=4
3
,得2a=4
3
,再由2c=4
2
,能求出椭圆C的标准方程.
(Ⅱ)联立
x2+3y2-12=0
y=x+2
,得x2+3x=0,从而A(0,2),B(-3,-1),设所求圆的方程为:x2+y2+Dx+Ey+F=0,由此能求出圆的方程.
(Ⅲ)设l2:y=kx+1,联立
y=kx+1
x2+3y2-12=0
,得(1+3k2)x2+6kx-9=0,点(0,1)在椭圆C内,得△>0恒成立.由此利用韦达定理和向量数量积能证明
RM
RN
=0
为定值.
解答: (Ⅰ)解:∵|PF1|+|PF2|=4
3

2a=4
3

2c=4
2
,∴a2=12,b2=a2-c2=4,
∴椭圆C的标准方程为
x2
12
+
y2
4
=1

(Ⅱ)解:联立方程得
x2+3y2-12=0
y=x+2
,得x2+3x=0,
解得x1=0,x2=-3,∴A(0,2),B(-3,-1),
设所求圆的方程为:x2+y2+Dx+Ey+F=0,
依题有F=0,4+2E+F=0,10-3D-E+F=0,
解得D=4,E=-2,F=0,
所以所求圆的方程为:x2+y2+4x-2y=0.
(Ⅲ)证明:设l2:y=kx+1,
联立方程组
y=kx+1
x2+3y2-12=0
,得(1+3k2)x2+6kx-9=0,
∵点(0,1)在椭圆C内,∴△>0恒成立.
设M(x1,kx1+1),N(x2,kx2+1),
x1+x2=
-6k
1+3k2
x1x2=
-9
1+3k2
,R(0,-2),
RM
=(x1,kx1+3),
RN
=(x2,kx2+3)

RM
RN
=x1x2+(kx1+3)(kx2+3)

=(1+k2)x1x2+3k(x1+x2)+9
=(1+k2
-9
3k2+1
+3k×
-6k
3k2+1
+9

=
-9-9k2
3k2+1
+
-18k2
3k2+1
+9

=
-27k2-9
3k2+1
+9=-9+9=0

RM
RN
=0
为定值.
点评:本题考查椭圆标准方程的求法,考查圆的方程的求法,考查向量的数量积为定值的证明,解题时要认真审题,注意向量数量积的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知O是三角形ABC的外心,AB=2,AC=5,若
AO
=x
AB
+y
AC
,且x+4y=2,则三角形ABC的面积为(  )
A、
5
39
4
B、
5
39
8
C、
5
39
16
D、
5
39
2

查看答案和解析>>

科目:高中数学 来源: 题型:

斜率为-1的直线过抛物线y2=-2px,(p>0)的焦点F,且与抛物线交于A,B两点,|AB|=8.
(1)求抛物线的方程.
(2)求∠AOB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

学校在高二开设了当代战争风云、投资理财、汽车模拟驾驶与保养、硬笔书法共4门选修课,每个学生必须且只需选修1门选修课,对于该年级的甲、乙、丙3名学生.
(Ⅰ)求这3名学生选择的选修课互不相同的概率;
(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1({a>b>0})的离心率e=
3
2
,直线l:y=x+
2
与以原点为圆心,椭圆的短半轴为半径的圆O相切.
(1)求椭圆C的标准方程;
(2)设直线x=my+1与椭圆C交于P,Q两点,直线A1R与A2Q交于点S,其中A1,A2为椭圆C的左、右顶点.问当m变化时,点S是否恒在一条直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
,满足|
a
|=1且(
a
-
b
)•(
a
+
b
)=
1
2

(1)若
a
b
=
1
2
,求向量
a
b
的夹角;
(2)在(1)的条件下,求|
a
-
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.求C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知p:|x-a|<4;q:(x-2)(x-3)<0,若¬p是¬q的充分不必要条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设双曲线C1
y2
a2
-
x2
b2
=1(a>0,b>0)的上焦点为F,上顶点为A,点B为双曲线虚轴的左端点,已知Cl的离心率为
2
3
3
,且△ABF的面积S=1-
3
2

(Ⅰ)求双曲线Cl的方程;
(Ⅱ)设抛物线C2的顶点在坐标原点,焦点为F,动直线l与C2相切于点P,与C2的准线相交于点Q试推断以线段PQ为直径的圆是否恒经过y轴上的某个定点M?若是,求出定点M的坐标;若不是,请说明理由.

查看答案和解析>>

同步练习册答案