精英家教网 > 高中数学 > 题目详情
学校在高二开设了当代战争风云、投资理财、汽车模拟驾驶与保养、硬笔书法共4门选修课,每个学生必须且只需选修1门选修课,对于该年级的甲、乙、丙3名学生.
(Ⅰ)求这3名学生选择的选修课互不相同的概率;
(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率.
考点:n次独立重复试验中恰好发生k次的概率
专题:概率与统计
分析:(Ⅰ)3名学生选择选修课的方法总数是43,选了3门不同的选修课的方法有
A
3
4
种,由此能够求出这3名学生选择的选修课互不相同的概率.
(Ⅱ) 3名学生选择选修课的方法总数是43,恰有2门选修课这3名学生都没选择的选法有
C
2
4
C
2
3
A
2
2
,由此能求出恰有2门选修课这3名学生都没选择的概率.
解答: (Ⅰ)3名学生选择选修课的方法总数是43,选了3门不同的选修课的方法有
A
3
4
种,故3这3名学生选择的选修课互不相同的概率P=
A
3
4
43
=
3
8

(Ⅱ)3名学生选择选修课的方法总数是43=64,恰有2门选修课这3名学生都没选择的选法有
C
2
4
C
2
3
A
2
2
=36,故恰有2门选修课这3名学生都没选择的概率P=
36
64
=
9
16
点评:本题考查概率的应用,是中档题.在历年的高考中都是重点题型.解题时要认真审题,仔细解答,注意排列组合知识的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
2x-2[x] , x≥0
f(x+1) , x<0
,其中[x]表示不超过x的最大整数,如[1.1]=1,[0.3]=0,若函数y=f(x)-k(x+1)恰有三个不同的零点,则k的取值范围是(  )
A、(-2,-1]∪[
1
2
2
3
B、[-2,-1)∪(0,
1
2
]
C、[
1
2
2
3
]
D、[
1
2
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知2013年2月10日春节.某蔬菜基地2013年2月2日有一批黄瓜进入市场销售,通过市场调查,预测黄瓜的价格f(x)(单位:元/kg)与时间x(x表示距2月10日的天数,单位:天,x∈(0,8]且x∈N*)的数据如下表:
时间x862
价格f(x)8420
(Ⅰ)根据上表数据,从下列函数中选取一个函数描述黄瓜价格f(x)与上市时间x的变化关系:f(x)=
ax+b,f(x)=ax2+bx+c,f(x)=a•bx,其中a≠0;并求出此函数;
(Ⅱ)在日常生活中,黄瓜的价格除了与上市日期相关,与供给量也密不可分.已知供给量h(x)=
1
3
x-
5
18
(x∈N*).在供给量的限定下,黄瓜实际价格g(x)=f(x)•h(x).求黄瓜实际价格g(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x3-ax2+1,是否存在实数a,使f(x)在区间[0,
3
3
]上为减函数,且在区间(
3
3
,1]上是增函数?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(1,1),B(1,-1),C(
2
cosθ,
2
sinθ)(θ∈R),O为坐标原点.
(1)若实数m,n满足m
OA
+n
OB
=2
OC
,求m2+n2
(2)问原点O能否成为△ABC的重心?

查看答案和解析>>

科目:高中数学 来源: 题型:

阅读材料,解答问题.
例:用图象法解一元二次不等式x2-2x-3>0.
解:设y=x2-2x-3,则y是x的二次函数.∵a=1>0,∴抛物线开口向上.
又当y=0时,x2-2x-3=0,解得x1=-1,x2=3.
由此得抛物线y=x2-2x-3的大致图象如图所示:
观察函数图象可知:当x<-1或x>3时,y>0.
∴x2-2x-3>0的解集是:x<-1或x>3.
(1)观察图象,直接写出一元二次不等式:x2-2x-3<0的解集是
 

(2)仿照上例,用图象法解一元二次不等式:x2-ax-2a2>0
(3)仿照上例,用图象法解一元二次不等式:ax2-(a+2)x+2>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的焦点是F1(-2
2
,0),F2(2
2
,0),其上的动点P满足|PF1|+|PF2|=4
3
.点O为坐标原点,椭圆C的下顶点为R.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ) 设直线l1:y=x+2与椭圆C的交于A,B两点,求过O,A,B三点的圆的方程;
(Ⅲ)设过点(0,1)且斜率为k的直线l2交椭圆C于M,N两点,试证明:无论k取何值时,
RM
RN
恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)对任意x∈R都有f(x)+f(1-x)=
1
2

(1)求f(
1
2
),f(
1
n
)+f(
n-1
n
)(n∈N*)的值;
(2)若数列{an}满足an=f(0)+f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)+f(1),那么数列{an}是等差数列吗?试证之;
(3)在(2)的条件下,设bn=4an-1,cn=bnqn-1(q≠0,n∈N*)求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

一条斜率为1的直线l与离心率为
3
的双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)交于P、Q两点,直线l与y轴交于R点,且
OP
OQ
=-3,
PR
=3
RQ
,求直线与双曲线的方程.

查看答案和解析>>

同步练习册答案