精英家教网 > 高中数学 > 题目详情
函数f(x)=x3-ax2+1,是否存在实数a,使f(x)在区间[0,
3
3
]上为减函数,且在区间(
3
3
,1]上是增函数?并说明理由.
考点:利用导数研究函数的单调性
专题:导数的综合应用
分析:根据条件可得当x=
3
3
时,函数f(x)取得极小值,利用f′(
3
3
)=0,解方程即可.
解答: 解:假设存在实数a,使f(x)在区间[0,
3
3
]上为减函数,且在区间(
3
3
,1]上是增函数,
则当x=
3
3
时,函数f(x)取得极小值,即f′(
3
3
)=0,
∵f(x)=x3-ax2+1,
∴f′(x)=3x2-2ax,
即f′(
3
3
)=3×(
3
3
2-2×(
3
3
)a=0,解得a=
3
2

此时f′(x)=3x2-2ax=3x2-
3
x=3x(x-
3
3
),
由f′(x)>0,解得x>
3
3
或x<0此时函数单调递增,满足函数在区间(
3
3
,1]上是增函数,
由f′(x)<0,解得0<x<
3
3
,此时函数单调递减,满足函数在区间(0,
3
3
]上是减函数,
故存在实数a=
3
2
,满足条件.
点评:本题主要考查函数单调性,极值和导数之间的关系,根据条件求出a的值后,要注意进行检验.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

f(x)=3x+3x-8,且f(1)<0,f(1.5)>0,f(1.25)<0,f(2)>0,则函数f(x)的零点落在区间(  )
A、(1,1.25)
B、(1.25,1.5)
C、(1.5,2)
D、不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平行四边形ABCD中,
AB
=
a
AD
=
b
AN
=3
NC
,则
BN
=(  )(用
a
b
表示)
A、
1
4
a
-
3
4
b
B、
3
4
a
-
1
4
b
C、
1
4
b
-
3
4
a
D、
3
4
b
-
1
4
a

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱柱ABCD-A1B1C1D1的棱长都为a,底面ABCD是菱形,且∠BAD=60°,侧棱A1A⊥平面ABCD,F为棱B1B的中点,M为线段AC1的中点.
(Ⅰ)求证:平面AFC1⊥平面A1C1AC;
(Ⅱ)求三棱锥C1-ABF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

斜率为-1的直线过抛物线y2=-2px,(p>0)的焦点F,且与抛物线交于A,B两点,|AB|=8.
(1)求抛物线的方程.
(2)求∠AOB的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆E的方程为
x2
a2
+
y2
b2
=1,离心率e=
2
3
,一个顶点坐标为(0,
5
),以椭圆的右焦点为圆心的圆C与直线3x-4y+4=0相切.
(1)求圆C的方程;
(2)过点Q(0,-3)的直线m与圆C交于不同的两点A(x1,y1),B(x2,y2)且为x1x2+y1y2=3时,求△AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

学校在高二开设了当代战争风云、投资理财、汽车模拟驾驶与保养、硬笔书法共4门选修课,每个学生必须且只需选修1门选修课,对于该年级的甲、乙、丙3名学生.
(Ⅰ)求这3名学生选择的选修课互不相同的概率;
(Ⅱ)求恰有2门选修课没有被这3名学生选择的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
a
b
,满足|
a
|=1且(
a
-
b
)•(
a
+
b
)=
1
2

(1)若
a
b
=
1
2
,求向量
a
b
的夹角;
(2)在(1)的条件下,求|
a
-
b
|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左,右焦点分别为F1,F2,上顶点为B.Q为抛物线y2=12x的焦点,且
F1B
QB
=0,2
F1F2
+
QF1
=0.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过定点P(0,2)的直线l与椭圆C交于M,N两点(M在P,N之间),设直线l的斜率为k(k>0),在x轴上是否存在点A(m,0),使得以AM,AN为邻边的平行四边形为菱形?若存在,求出实数m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案