精英家教网 > 高中数学 > 题目详情
若焦点在x轴上的椭圆的离心率为, 则m的值为(       )
A.B.C.D.
B
本题考查椭圆的标准方程和几何性质.
因为焦点在x轴上的椭圆,所以则离心率为,解得故选B
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若点在椭圆上,分别是椭圆的两焦点,且,则的面积是                                                                    (    )
A.2B.1C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的左、右焦点分别为,上顶点为,过点垂直的直线交轴负半轴于点,且,若过三点的圆恰好与直线相切. 过定点的直线与椭圆交于两点(点在点之间).

(Ⅰ)求椭圆的方程;
(Ⅱ)设直线的斜率,在轴上是否存在点,使得以为邻边的平行四边形是菱形. 如果存在,求出的取值范围,如果不存在,请说明理由;
(Ⅲ)若实数满足,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的准线与轴平行, 那么的取值范围为
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

 (本小题共12分)
.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆的两焦点分别为F1、F2,过F1作直线交椭圆于A、B两点,
则△ABF2周长为_____________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分15分)
知椭圆的离心率,过点的直线与原点的距离为.         
(1)求椭圆的方程;
(2)设为椭圆的左、右焦点,过作直线交椭圆于两点,求的内切圆半径的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆的顶点为焦点,以椭圆的焦点为顶点的双曲线方程为

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)已知椭圆,直线.椭圆上是否存在一点,它到直线的距离最小?最小距离是多少?

查看答案和解析>>

同步练习册答案