分析 由题意可设x1<x2,则$|f({x_1})-f({x_2})|<|\frac{1}{{g({x_1})}}-\frac{1}{{g({x_2})}}|$ 等价于$f({x_2})-f({x_1})<\frac{1}{{g({x_2})}}-\frac{1}{{g({x_1})}}$,即$f({x_2})-\frac{1}{{g({x_2})}}<f({x_1})-\frac{1}{{g({x_1})}}$;
令h(x)=f(x)-$\frac{1}{g(x)}$,转化为h(x)在x∈(3,4)上恒成立问题.
解答 解:易知$f(x),\frac{1}{g(x)}$在x∈[3,4]上均为增函数,
不妨设x1<x2,则$|f({x_1})-f({x_2})|<|\frac{1}{{g({x_1})}}-\frac{1}{{g({x_2})}}|$ 等价于$f({x_2})-f({x_1})<\frac{1}{{g({x_2})}}-\frac{1}{{g({x_1})}}$,
即$f({x_2})-\frac{1}{{g({x_2})}}<f({x_1})-\frac{1}{{g({x_1})}}$;
令$h(x)=f(x)-\frac{1}{g(x)}=x-1-alnx-\frac{e^x}{ex}$,则h(x)在x∈[3,4]为减函数,
则$h{(x)^'}=1-\frac{a}{x}-\frac{{{e^x}({x-1})}}{{e{x^2}}}≤0$在x∈(3,4)上恒成立,
∴$a≥x-{e^{x-1}}+\frac{{{e^{x-1}}}}{x},x∈[{3,4}]$恒成立;
令$u(x)=x-{e^{x-1}}+\frac{{{e^{x-1}}}}{x},x∈[{3,4}]$,
∴$u'(x)=1-{e^{x-1}}+\frac{{{e^{x-1}}(x-1)}}{x^2}=1-{e^{x-1}}[{{{({\frac{1}{x}-\frac{1}{2}})}^2}+\frac{3}{4}}],x∈[{3,4}]$,
∴u(x)为减函数,∴u(x)在x∈[3,4]的最大值为$u(3)=3-\frac{2}{3}{e^2}$;
综上,实数a的取值范围为[3-$\frac{2}{3}{e}^{2}$,0).
故答案为:[3-$\frac{2}{3}{e}^{2}$,0).
点评 本题主要考查函数导数的有关知识,考查灵活运用有关基础知识解决问题的能力.本题属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{OM}=\frac{1}{4}\overrightarrow a+\frac{2}{3}\overrightarrow b$ | B. | $\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$ | C. | $\overrightarrow{OM}=\frac{2}{5}\overrightarrow a+\frac{3}{4}\overrightarrow b$ | D. | $\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\frac{3π}{4}$,$\frac{5π}{6}$] | B. | [0,$\frac{3π}{4}$] | C. | [0,$\frac{3π}{4}$]∪[$\frac{5π}{6}$,π) | D. | [$\frac{5π}{6}$,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com