精英家教网 > 高中数学 > 题目详情
18.设方程$\left\{\begin{array}{l}{x=1+cosθ}\\{y=\sqrt{3}+sinθ}\end{array}\right.$(θ为参数)表示曲线C.
(Ⅰ)写出曲线C的普通方程,并说明它的轨迹;
(Ⅱ)求曲线C上的动点到坐标原点距离的最小值.

分析 (Ⅰ)消去参数得曲线C的普遍方程,即可说明它的轨迹;
(Ⅱ)设圆上的动点P(1+cosθ,$\sqrt{3}$+sinθ)(0≤θ<2π),利用两点间的距离公式求曲线C上的动点到坐标原点距离的最小值.

解答 解:(Ⅰ)∵$\left\{\begin{array}{l}{x=1+cosθ}\\{y=\sqrt{3}+sinθ}\end{array}\right.$,消去参数得曲线C的普遍方程是(x-1)2+(y-$\sqrt{3}$)=1.
它表示以(1,$\sqrt{3}$)为圆心,1为半径的圆…(5分)
(Ⅱ)设圆上的动点P(1+cosθ,$\sqrt{3}$+sinθ)(0≤θ<2π)
则|OP|=$\sqrt{(1+cosθ)^{2}+(\sqrt{3}+sinθ)^{2}}$=$\sqrt{5+4cos(θ-\frac{π}{3})}$
∴当$θ=\frac{4π}{3}$时,|OP|min=1…(10分)

点评 本题考查参数方程与普通方程的互化,考查参数方程的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.设函数y=f(x)的定义域为R,并且满足f(x-y)=f(x)-f(y),且f(2)=1,当x>0时,f(x)>0.
(1)求f(0)的值;
(2)判断函数f(x)的单调性,并给出证明;
(3)如果f(x)+f(x+2)<2,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知全集U={1,2,3,4,5},A={x|x2-5x+4=0},则∁UA={2,3,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}满足a1=4,Sn+Sn+1=$\frac{5}{3}$an+1,则an=$\left\{\begin{array}{l}{4,n=1}\\{-3×{4}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列四个命题:
(1)“若x2+y2=0,则实数x,y均为0”的逆命题
(2)“相似三角形的面积相等”的否命题
(3)“A∩B=A,则A⊆B”逆否命题
(4)“末位数不是0的数可被3整除”的逆否命题,
其中真命题为(  )
A.(1)(2)B.(2)(3)C.(1)(3)D.(3)(4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x+$\frac{a}{x}$+b,其中a,b是常数且a>0.
(1)用函数单调性的定义证明f(x)在区间(0,$\sqrt{a}$]上是单调递减函数;
(2)已知函数f(x)在区间[$\sqrt{a}$,+∞)上是单调递增函数,且在区间[1,2]上f(x)的最大值为5,最小值为3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若f(x)=x-1-alnx,g(x)=$\frac{ex}{e^x}$,a<0,且对任意x1,x2∈[3,4](x1≠x2),|f(x1)-f(x2)|<|$\frac{1}{{g({x_1})}}$-$\frac{1}{{g({x_2})}}$|的恒成立,则实数a的取值范围为[3-$\frac{2}{3}{e}^{2}$,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.根据下列条件,求直线的一般方程:
(1)过点(2,1)且与直线2x+3y=0平行;
(2)与直线y=x垂直,且在两坐标轴上的截距之和为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列选项正确的是(  )
A.loga(x+y)=logax+logayB.loga$\frac{x}{y}$=$\frac{lo{g}_{a}x}{lo{g}_{a}y}$
C.(logax)2=2logaxD.$\frac{lo{g}_{a}x}{n}$=loga$\root{n}{x}$

查看答案和解析>>

同步练习册答案