精英家教网 > 高中数学 > 题目详情
13.下列四个命题:
(1)“若x2+y2=0,则实数x,y均为0”的逆命题
(2)“相似三角形的面积相等”的否命题
(3)“A∩B=A,则A⊆B”逆否命题
(4)“末位数不是0的数可被3整除”的逆否命题,
其中真命题为(  )
A.(1)(2)B.(2)(3)C.(1)(3)D.(3)(4)

分析 写出原命题的逆命题,可判断(1);写出原命题的否命题,可判断(2);写出原命题的逆否命题,可判断(3);写出原命题的逆否命题,可判断(4);

解答 解:(1)“若x2+y2=0,则实数x,y均为0”的逆命题为“若实数x,y均为0,则x2+y2=0”为真命题;
(2)“相似三角形的面积相等”的否命题为“不相似三角形的面积不相等”为假命题;
(3)“A∩B=A,则A⊆B”为真命题,故其逆否命题也为真命题;
(4)“末位数不是0的数可被3整除”为假命题,故其的逆否命题也为假命题,
故选:C

点评 本题以命题的真假判断与应用为载体,考查了复合命题,集合的交集运算,整除的定义,三角形相似的性质,实数的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.使函数y=xα的定义域为R且为奇函数的α的值为(  )
A.-1B.0C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.等比数列{an}满足an>0,n∈N*,且a3•a2n-3=32n(n≥2),则当n≥1时,${log_{\sqrt{3}}}{a_1}$+${log_{\sqrt{3}}}{a_2}$+…+${log_{\sqrt{3}}}{a_{2n-1}}$=(  )
A.$\frac{n(2n-1)}{2}$B.2(2n2-n)C.$\frac{n^2}{2}$D.2n2-n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,在△ABO中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OB}$,AD与BC相交于点M,设$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OB}=\overrightarrow b$.试用$\overrightarrow a$和$\overrightarrow b$表示$\overrightarrow{OM}$,则(  )
A.$\overrightarrow{OM}=\frac{1}{4}\overrightarrow a+\frac{2}{3}\overrightarrow b$B.$\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$C.$\overrightarrow{OM}=\frac{2}{5}\overrightarrow a+\frac{3}{4}\overrightarrow b$D.$\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设集合A={x|x2<9},B={x|(x-2)(x+4)<0}.
(1)求集合A∩B;
(2)若不等式2x2+ax+b<0的解集为A∪B,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设方程$\left\{\begin{array}{l}{x=1+cosθ}\\{y=\sqrt{3}+sinθ}\end{array}\right.$(θ为参数)表示曲线C.
(Ⅰ)写出曲线C的普通方程,并说明它的轨迹;
(Ⅱ)求曲线C上的动点到坐标原点距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数y=f(x)是奇函数,当x<0时,f(x)=x2+ax(a∈R),且f(2)=6,则f(1)=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知点A($\sqrt{3}$+1,0),B(0,2).若直线l:y=k(x-1)+1与线段AB相交,则直线l倾斜角α的取值范围是(  )
A.[$\frac{3π}{4}$,$\frac{5π}{6}$]B.[0,$\frac{3π}{4}$]C.[0,$\frac{3π}{4}$]∪[$\frac{5π}{6}$,π)D.[$\frac{5π}{6}$,π)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.计算:
(1)[(5$\frac{4}{9}$)0.5+(0.008)-$\frac{2}{3}$÷(0.2)-1]÷0.06250.25
(2)[(1-log63)2+log62•log618]÷log64.

查看答案和解析>>

同步练习册答案