分析 利用递推公式与等比数列的通项公式即可得出.
解答 解:∵Sn+Sn+1=$\frac{5}{3}$an+1,
∴n=1时,a1+a1+a2=$\frac{5}{3}{a}_{2}$,解得a2=-12.
n≥2时,Sn-1+Sn=$\frac{5}{3}{a}_{n}$,可得:an+an+1=$\frac{5}{3}$an+1+$\frac{5}{3}{a}_{n}$,
化为:an+1=4an,
而a2=-a1,
∴数列{an}从第二项起为等比数列.
∴n≥2时,an=-12×4n-2=-3×4n-1.
∴an=$\left\{\begin{array}{l}{4,n=1}\\{-3×{4}^{n-1},n≥2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{4,n=1}\\{-3×{4}^{n-1},n≥2}\end{array}\right.$.
点评 本题考查了递推公式与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1] | B. | [3,+∞) | C. | (-∞,0)∪(1,+∞) | D. | (-∞,-1]∪[3,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 8 | C. | 9 | D. | 18 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{OM}=\frac{1}{4}\overrightarrow a+\frac{2}{3}\overrightarrow b$ | B. | $\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$ | C. | $\overrightarrow{OM}=\frac{2}{5}\overrightarrow a+\frac{3}{4}\overrightarrow b$ | D. | $\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com