精英家教网 > 高中数学 > 题目详情
6.数列{an}满足a1=4,Sn+Sn+1=$\frac{5}{3}$an+1,则an=$\left\{\begin{array}{l}{4,n=1}\\{-3×{4}^{n-1},n≥2}\end{array}\right.$.

分析 利用递推公式与等比数列的通项公式即可得出.

解答 解:∵Sn+Sn+1=$\frac{5}{3}$an+1
∴n=1时,a1+a1+a2=$\frac{5}{3}{a}_{2}$,解得a2=-12.
n≥2时,Sn-1+Sn=$\frac{5}{3}{a}_{n}$,可得:an+an+1=$\frac{5}{3}$an+1+$\frac{5}{3}{a}_{n}$,
化为:an+1=4an
而a2=-a1
∴数列{an}从第二项起为等比数列.
∴n≥2时,an=-12×4n-2=-3×4n-1
∴an=$\left\{\begin{array}{l}{4,n=1}\\{-3×{4}^{n-1},n≥2}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{4,n=1}\\{-3×{4}^{n-1},n≥2}\end{array}\right.$.

点评 本题考查了递推公式与等比数列的通项公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=ax+b的图象如图所示,则函数g(x)=loga(x+b)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知各项均为正数的等比数列{an}中,a2=1,则其前3项的和S3的取值范围是(  )
A.(-∞,-1]B.[3,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知F1、F2为椭圆C:$\frac{x^2}{4}+\frac{y^2}{9}$=1的左、右焦点,点P在椭圆上,∠F1PF2=90°,则|PF1|•|PF2|等于(  )
A.4B.8C.9D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图所示,在△ABO中,$\overrightarrow{OC}$=$\frac{1}{4}$$\overrightarrow{OA}$,$\overrightarrow{OD}$=$\frac{1}{2}$$\overrightarrow{OB}$,AD与BC相交于点M,设$\overrightarrow{OA}=\overrightarrow a$,$\overrightarrow{OB}=\overrightarrow b$.试用$\overrightarrow a$和$\overrightarrow b$表示$\overrightarrow{OM}$,则(  )
A.$\overrightarrow{OM}=\frac{1}{4}\overrightarrow a+\frac{2}{3}\overrightarrow b$B.$\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$C.$\overrightarrow{OM}=\frac{2}{5}\overrightarrow a+\frac{3}{4}\overrightarrow b$D.$\overrightarrow{OM}=\frac{1}{7}\overrightarrow a+\frac{3}{7}\overrightarrow b$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1-{2}^{x}}{a+{2}^{x+1}}$是奇函数.
(1)求实数a的值;
(2)判断函数f(x)的单调性,并给以证明;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设方程$\left\{\begin{array}{l}{x=1+cosθ}\\{y=\sqrt{3}+sinθ}\end{array}\right.$(θ为参数)表示曲线C.
(Ⅰ)写出曲线C的普通方程,并说明它的轨迹;
(Ⅱ)求曲线C上的动点到坐标原点距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知整数n≥4,集合M={1,2,3,…,n}的所有含有4个元素的子集记为A1,A2,A3,…,${A_{C_n^4}}$.
设A1,A2,A3,…,${A_{C_n^4}}$中所有元素之和为Sn
(1)求S4,S5,S6并求出Sn
(2)证明:S4+S5+…+Sn=10Cn+26

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.若已知f(ex+$\frac{1}{e}$)=e2x+$\frac{1}{{e}^{2x}}$,关于x的不等式f(x)+m$\sqrt{f(x)+2}$≥0恒成立,则实数m的取值范围是[-1,+∞).

查看答案和解析>>

同步练习册答案