精英家教网 > 高中数学 > 题目详情
14.已知F1、F2为椭圆C:$\frac{x^2}{4}+\frac{y^2}{9}$=1的左、右焦点,点P在椭圆上,∠F1PF2=90°,则|PF1|•|PF2|等于(  )
A.4B.8C.9D.18

分析 根据椭圆的定义及椭圆标准方程求得到|PF1|+|PF2|=2a=6,由∠F1PF2=90°可得|PF1|2+|PF2|2=|F1F2|2=(2c)2=20,两边平方即可求得|PF1||PF2|.

解答 解:∵椭圆方程:$\frac{x^2}{4}+\frac{y^2}{9}$=1,
∴a2=9,b2=4,可得c2=a2-b2=5,即a=3,c=$\sqrt{5}$,
设|PF1|=m,|PF2|=n,
∵∠F1PF2=90°,可得PF1⊥PF2
则有$\left\{\begin{array}{l}{m+n=2a}\\{{m}^{2}+{n}^{2}=(2c)^{2}}\end{array}\right.$,即$\left\{\begin{array}{l}{m+n=6}\\{{m}^{2}+{n}^{2}=20}\end{array}\right.$,
∴36=20+2mn
得2mn=16,即mn=8,
∴|PF1|•|PF2|=8.
故选B.

点评 本题考查椭圆的焦点三角形为直角三角形的性质,考查了勾股定理、椭圆的定义和简单几何性质等应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设f(x)为奇函数,且在(-∞,0)内是减函数,f(2)=0,则$\frac{f(x)}{x}$<0的解集为(  )
A.(-2,0)∪(2,+∞)B.(-∞,2)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,b=$\sqrt{3}$,c=3,B=30°,则a=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{3}$或2$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知△OCB中,A是BC边的中点,D是OB边上靠近点B的三等分点,DC与OA相交于点E,DE:DC=2:5,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{OC},\overrightarrow{DC}$;
(2)若$\overrightarrow{OE}=λ\overrightarrow{OA}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知全集U={1,2,3,4,5},A={x|x2-5x+4=0},则∁UA={2,3,5}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知(1,2)∈{(x,y)|ax+by=1,bx+ay=1},求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.数列{an}满足a1=4,Sn+Sn+1=$\frac{5}{3}$an+1,则an=$\left\{\begin{array}{l}{4,n=1}\\{-3×{4}^{n-1},n≥2}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x+$\frac{a}{x}$+b,其中a,b是常数且a>0.
(1)用函数单调性的定义证明f(x)在区间(0,$\sqrt{a}$]上是单调递减函数;
(2)已知函数f(x)在区间[$\sqrt{a}$,+∞)上是单调递增函数,且在区间[1,2]上f(x)的最大值为5,最小值为3,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.定义在R上的奇函数f(x),当x>0时,f(x)=-x2+2x-3.
当x∈[2,4]时,求f(x)的值域;
当f(m)=6时,求m的值.

查看答案和解析>>

同步练习册答案