精英家教网 > 高中数学 > 题目详情
2.如图,已知△OCB中,A是BC边的中点,D是OB边上靠近点B的三等分点,DC与OA相交于点E,DE:DC=2:5,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{OC},\overrightarrow{DC}$;
(2)若$\overrightarrow{OE}=λ\overrightarrow{OA}$,求实数λ的值.

分析 (1)根据平行四边形法则求出$\overrightarrow{OA}$,再利用向量加减运算的三角形法则求出$\overrightarrow{OC},\overrightarrow{DC}$;
(2)根据$\overrightarrow{OE}=\overrightarrow{OD}+\overrightarrow{DE}$,用$\overrightarrow{a},\overrightarrow{b}$表示出$\overrightarrow{OE}$即可得出λ的值.

解答 解:(1)∵A为BC的中点,
∴$\overrightarrow{OA}$=$\frac{1}{2}$($\overrightarrow{OB}+\overrightarrow{OC}$),
∴$\overrightarrow{OC}$=2$\overrightarrow{OA}$-$\overrightarrow{OB}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,
∵D为OB的三等分点,∴$\overrightarrow{OD}$=$\frac{2}{3}$$\overrightarrow{OB}$=$\frac{2}{3}$$\overrightarrow{b}$,
∴$\overrightarrow{DC}$=$\overrightarrow{OC}-\overrightarrow{OD}$=2$\overrightarrow{a}$-$\overrightarrow{b}$-$\frac{2}{3}$$\overrightarrow{b}$=2$\overrightarrow{a}$-$\frac{5}{3}$$\overrightarrow{b}$.
(2)∵DE:DC=2:5,
∴$\overrightarrow{DE}$=$\frac{2}{5}$$\overrightarrow{DC}$=$\frac{4}{5}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$,
∴$\overrightarrow{OE}$=$\overrightarrow{OD}+\overrightarrow{DE}$=$\frac{2}{3}$$\overrightarrow{b}$+$\frac{4}{5}$$\overrightarrow{a}$-$\frac{2}{3}$$\overrightarrow{b}$=$\frac{4}{5}$$\overrightarrow{a}$.
∴λ=$\frac{4}{5}$.

点评 本题考查了平面向量的线性运算,结合图形,根据三角形或平行四边形法则得出,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知命题p:1∈{x|(x+2)(x-3)<0},命题q:∅={0},则下面判断正确的是(  )
A.p假q真B.“p∨q”为真C.“p∧q”为真D.“¬q”为假

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=4sin2x是(  )
A.周期为$\frac{π}{2}$的奇函数B.周期为$\frac{π}{2}$的偶函数
C.周期为π的奇函数D.周期为π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=8,且△ABC的面积的最大值为4$\sqrt{3}$,则此时△ABC的形状为(  )
A.等腰三角形B.正三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知各项均为正数的等比数列{an}中,a2=1,则其前3项的和S3的取值范围是(  )
A.(-∞,-1]B.[3,+∞)C.(-∞,0)∪(1,+∞)D.(-∞,-1]∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}中,a1=5,an=2an-1+2n-1(n≥2,n∈N*
(1)证明:数列{$\frac{{{a_n}-1}}{2^n}$}为等差数列,并求出数列{an}的通项公式;
(2)令bn=lg$\frac{{{a_n}-1}}{n}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知F1、F2为椭圆C:$\frac{x^2}{4}+\frac{y^2}{9}$=1的左、右焦点,点P在椭圆上,∠F1PF2=90°,则|PF1|•|PF2|等于(  )
A.4B.8C.9D.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1-{2}^{x}}{a+{2}^{x+1}}$是奇函数.
(1)求实数a的值;
(2)判断函数f(x)的单调性,并给以证明;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:y=2x+m与圆O:x2+y2=1相交于A,B两个不同的点,且A(cosα,sinα),B(cosβ,sinβ).
(1)当△AOB面积最大时,求m的取值,并求出|AB|的长度.
(2)判断sin(α+β)是否为定值;若是,求出定值的大小;若不是,说明理由.

查看答案和解析>>

同步练习册答案