精英家教网 > 高中数学 > 题目详情
20.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=8,且△ABC的面积的最大值为4$\sqrt{3}$,则此时△ABC的形状为(  )
A.等腰三角形B.正三角形C.直角三角形D.钝角三角形

分析 由$\sqrt{3}$(acosB+bcosA)=2csinC及正弦定理可得$\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,结合sinC>0,化简可得sinC,由a+b=8,利用基本不等式可得ab≤16,(当且仅当a=b=4成立),由△ABC的面积的最大值S△ABC=$\frac{1}{2}$absinC≤4$\sqrt{3}$,即可解得a=b=4,从而得解△ABC的形状为等腰三角形.

解答 解:∵$\sqrt{3}$(acosB+bcosA)=2csinC,
∴$\sqrt{3}$(sinAcosB+sinBcosA)=2sin2C,
∴$\sqrt{3}$sinC=2sin2C,且sinC>0,
∴sinC=$\frac{\sqrt{3}}{2}$,
∵a+b=8,可得:8≥2$\sqrt{ab}$,解得:ab≤16,(当且仅当a=b=4成立)
∵△ABC的面积的最大值S△ABC=$\frac{1}{2}$absinC≤$\frac{1}{2}×16×\frac{\sqrt{3}}{2}$=4$\sqrt{3}$,
∴a=b=4,
则此时△ABC的形状为等腰三角形.
故选:A.

点评 本题主要考查了正弦定理,三角形面积公式,基本不等式的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.在△ABC中,角A、B、C所对的边分别是a,b,c,且sinA>sinC,已知$\overrightarrow{AB}$•$\overrightarrow{BC}$=-2,cosB=$\frac{1}{3}$,b=3.
(1)求a与c;      
 (2)求cos(B-C)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.非空集合A中的元素个数用(A)表示,定义(A-B)=$\left\{\begin{array}{l}{(A)-(B),(A)≥(B)}\\{(B)-(A),(A)<(B)}\end{array}\right.$,若A={-1,0},B={x||x2-2x-3|=a},且(A-B)≤1,则a的所有可能值为(  )
A.{a|a≥4}B.{a|a>4或a=0}C.{a|0≤a≤4}D.{a|a≥4或a=0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}:$\frac{1}{2}$,$\frac{1}{3}$+$\frac{2}{3}$,$\frac{1}{4}$+$\frac{2}{4}$+$\frac{3}{4}$,…,$\frac{1}{10}$+$\frac{2}{10}$+$\frac{3}{10}$+…+$\frac{9}{10}$,…,若bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,那么数列{bn}的前n项和Sn为(  )
A.$\frac{n}{n+1}$B.$\frac{4n}{n+1}$C.$\frac{3n}{n+1}$D.$\frac{5n}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,b=$\sqrt{3}$,c=3,B=30°,则a=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{3}$或2$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{1}{{1-{a_n}}}$(n∈N*),a2017=(  )
A.$\frac{1}{2}$B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知△OCB中,A是BC边的中点,D是OB边上靠近点B的三等分点,DC与OA相交于点E,DE:DC=2:5,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示向量$\overrightarrow{OC},\overrightarrow{DC}$;
(2)若$\overrightarrow{OE}=λ\overrightarrow{OA}$,求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知(1,2)∈{(x,y)|ax+by=1,bx+ay=1},求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为2的两个全等的等腰直角三角形,则该几何体的外接球的表面积是(  )
A.$\frac{8}{3}$B.4$\sqrt{3}$πC.12πD.$\frac{8\sqrt{3}}{3}$π

查看答案和解析>>

同步练习册答案