精英家教网 > 高中数学 > 题目详情
11.非空集合A中的元素个数用(A)表示,定义(A-B)=$\left\{\begin{array}{l}{(A)-(B),(A)≥(B)}\\{(B)-(A),(A)<(B)}\end{array}\right.$,若A={-1,0},B={x||x2-2x-3|=a},且(A-B)≤1,则a的所有可能值为(  )
A.{a|a≥4}B.{a|a>4或a=0}C.{a|0≤a≤4}D.{a|a≥4或a=0}

分析 根据已知条件容易判断出a>0,所以由集合B得到两个方程,x2+2x-3-a=0,或x2+2x-3+a=0.容易判断出方程x2+2x-3-a=0有两个不等实数跟,所以根据已知条件即知方程x2+2x-3+a=0有两个不相等实数根,所以判别式△=4-4(a-3)≥0,这样即可求出a的值.

解答 解:(1)若a=0,得到x2-2x-3=0,解得x=-1或3,即B={-1,3},
∴集合B有2个元素,则(A-B)=0,符合条件(A-B)≤1,
(2)a>0时,得到x2-2x-3=±a,即x2-2x-3-a=0或x2-2x-3+a=0;
对于方程x2-2x-3-a=0,△=4+4(3+a)>0,该方程有两个不同实数根,
则(A-B)=0,符合条件(A-B)≤1,
对于方程x2-2x-3+a=0,△=4+4(3-a)≥0,
0<a≤4时,该方程有两个不同实数根,符合条件(A-B)≤1,
综上所述a的范围为0≤a≤4,
故选:C

点评 考查对新定义(A-B)的理解及运用情况,以及描述法表示集合,一元二次方程解的情况和判别式△的关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sin(x+$\frac{π}{3}}$)cosx.
(1)若x∈[0,$\frac{π}{2}}$],求f(x)的取值范围;
(2)设△ABC的内角A、B、C所对的边分别为a、b、c,已知A为锐角,f(A)=$\frac{{\sqrt{3}}}{2}$,b=2,c=3,求BC边上的中线长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:1∈{x|(x+2)(x-3)<0},命题q:∅={0},则下面判断正确的是(  )
A.p假q真B.“p∨q”为真C.“p∧q”为真D.“¬q”为假

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设集合A={x|2a-1≤x≤a+3},集合B={x|x<-1或x>5}.
(1)当a=-2时,求A∩B;
(2)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若函数f(x)=ax+b的图象如图所示,则函数g(x)=loga(x+b)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)计算:-$\frac{5}{2}$log34+log3$\frac{32}{9}$-($\frac{1}{64}$)${\;}^{-\frac{2}{3}}$
(2)已知2a=5b=100,求$\frac{1}{a}$+$\frac{1}{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数y=4sin2x是(  )
A.周期为$\frac{π}{2}$的奇函数B.周期为$\frac{π}{2}$的偶函数
C.周期为π的奇函数D.周期为π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=8,且△ABC的面积的最大值为4$\sqrt{3}$,则此时△ABC的形状为(  )
A.等腰三角形B.正三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1-{2}^{x}}{a+{2}^{x+1}}$是奇函数.
(1)求实数a的值;
(2)判断函数f(x)的单调性,并给以证明;
(3)求函数f(x)的值域.

查看答案和解析>>

同步练习册答案