精英家教网 > 高中数学 > 题目详情
20.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为2的两个全等的等腰直角三角形,则该几何体的外接球的表面积是(  )
A.$\frac{8}{3}$B.4$\sqrt{3}$πC.12πD.$\frac{8\sqrt{3}}{3}$π

分析 根据几何体的三视图,得该几何体为一直四棱锥,画出直观图,求出该四棱锥的外接球的直径即可.

解答 解:根据几何体的三视图,得该几何体为一直四棱锥,其直观图如图所示;

∵正视图和侧视图是腰长为2的两个全等的等腰直角三角形,
∴四棱锥的底面是正方形,且边长为2,其中一条侧棱SA⊥底面ABCD且棱长SA=2,
∴四棱锥的侧棱SB=SD=2$\sqrt{2}$,
∴四棱锥的侧棱SC满足SC2=SA2+AB2+AD2=22+22+22=12,
∴该几何体的外接球的直径为2R=SC,
它的表面积为4πR2=πSC2=12π.
故选:C.

点评 本题考查了利用空间几何体的三视图求几何体外接圆的表面积的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.在△ABC中,角A,B,C所对的边分别为a,b,c,若$\sqrt{3}$(acosB+bcosA)=2csinC,a+b=8,且△ABC的面积的最大值为4$\sqrt{3}$,则此时△ABC的形状为(  )
A.等腰三角形B.正三角形C.直角三角形D.钝角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{1-{2}^{x}}{a+{2}^{x+1}}$是奇函数.
(1)求实数a的值;
(2)判断函数f(x)的单调性,并给以证明;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知0<α<β<π,且cosαcosβ=$\frac{1}{5}$,sinαsinβ=$\frac{2}{5}$,则tan(β-α)的值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知整数n≥4,集合M={1,2,3,…,n}的所有含有4个元素的子集记为A1,A2,A3,…,${A_{C_n^4}}$.
设A1,A2,A3,…,${A_{C_n^4}}$中所有元素之和为Sn
(1)求S4,S5,S6并求出Sn
(2)证明:S4+S5+…+Sn=10Cn+26

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.分别在两个平行平面内的两条直线间的位置关系不可能为②
①平行   ②相交   ③异面    ④垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直线l:y=2x+m与圆O:x2+y2=1相交于A,B两个不同的点,且A(cosα,sinα),B(cosβ,sinβ).
(1)当△AOB面积最大时,求m的取值,并求出|AB|的长度.
(2)判断sin(α+β)是否为定值;若是,求出定值的大小;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.幂函数y=f(x)的图象经过点(8,2),则此幂函数的解析式为f(x)=${x}^{\frac{1}{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知点M(1,2),N(3,2),点F是直线l:y=x-3上的一动点,当∠MFN最大时,过点M,N,F的圆的方程是(x-2)2+(y-1)2=2.

查看答案和解析>>

同步练习册答案