精英家教网 > 高中数学 > 题目详情
5.分别在两个平行平面内的两条直线间的位置关系不可能为②
①平行   ②相交   ③异面    ④垂直.

分析 利用空间中两直线的位置关系求解.

解答 解:分别在两个平行平面内的两条直线可能平行,也可能共面,
也可能是异面直线.
故答案为②.

点评 本题考查两直线位置关系的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{1}{{1-{a_n}}}$(n∈N*),a2017=(  )
A.$\frac{1}{2}$B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在等腰直角△ABC,∠ABC=90°,AB=2$\sqrt{2}$,点P在线段AC上,若点Q在线段PC上,且∠PBQ=30°,则△BPQ的面积的最小值为8-4$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对于两个定义域均为D的函数f(x),g(x),若存在最小正实数M,使得对于任意x∈D,都有|f(x)-g(x)|≤M,则称M为函数f(x),g(x)的“差距”,并记作||f(x),g(x)||.
(1)求f(x)=sinx(x∈R),g(x)=cosx(x∈R)的差距;
(2)设f(x)=$\sqrt{x}$(x∈[1,e${\;}^{\frac{a}{2}}$]),g(x)=mlnx(x∈[1,e${\;}^{\frac{a}{2}}$]).(e≈2.718)
①若m=2,且||f(x),g(x)||=1,求满足条件的最大正整数a;
②若a=2,且||f(x),g(x)||=2,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.一个几何体的三视图如图所示,其中正视图和侧视图是腰长为2的两个全等的等腰直角三角形,则该几何体的外接球的表面积是(  )
A.$\frac{8}{3}$B.4$\sqrt{3}$πC.12πD.$\frac{8\sqrt{3}}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图(a),在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=8,AD=CD=4,将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图(b)所示.
(1)求证:BC⊥平面ACD; 
(2)求几何体D-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.幂函数y=f(x)的图象经过点(2,8),且满足f(x)=64的x的值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=log3x+x-5的零点x0∈[a,b],且b-a=1,a,b∈N*,则a+b=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知直线l1:(1+4k)x-(2-3k)y+(2-14k)=0,圆C:x2+y2-6x-8y+9=0.
(1)判断直线l1与圆的位置关系,并证明你的结论;
(2)直线l2过直线l1的定点且l1⊥l2,若l1与圆C交与A,B两点,l2与圆C交与E,F两点,求AB+EF的最大值.

查看答案和解析>>

同步练习册答案