精英家教网 > 高中数学 > 题目详情
13.对于两个定义域均为D的函数f(x),g(x),若存在最小正实数M,使得对于任意x∈D,都有|f(x)-g(x)|≤M,则称M为函数f(x),g(x)的“差距”,并记作||f(x),g(x)||.
(1)求f(x)=sinx(x∈R),g(x)=cosx(x∈R)的差距;
(2)设f(x)=$\sqrt{x}$(x∈[1,e${\;}^{\frac{a}{2}}$]),g(x)=mlnx(x∈[1,e${\;}^{\frac{a}{2}}$]).(e≈2.718)
①若m=2,且||f(x),g(x)||=1,求满足条件的最大正整数a;
②若a=2,且||f(x),g(x)||=2,求实数m的取值范围.

分析 (1)直接根据题设“差距”定义可转化为三角函数求值问题;
(2)①利用函数的单调性可直接求出最大正整数;②构造新函数h(x)=f(x)-g(x)=$\sqrt{x}$-mlnx,
对h(x)求导,参数m分类讨论根据函数的单调性求出m的取值范围;

解答 解:(1)由题意:|f(x)-g(x)|=|sinx-cosx|=$\sqrt{2}$|sin(x-$\frac{π}{4}$)|≤$\sqrt{2}$,
当x=kπ+$\frac{3π}{4}$,k∈Z时取“=”,所以||f(x),g(x)||=$\sqrt{2}$;
(2)①令h(x)=f(x)-g(x)=$\sqrt{x}$-2lnx.则h′(x)=$\frac{1}{2\sqrt{x}}$-$\frac{2}{x}$=$\frac{\sqrt{x}-4}{2x}$,令h′(x)=0,则x=16.列表:

x(0,16)16(16,+∞)
h′(x)-0+
h(x)
∵h(1)=1;当a=3时,h(${e}^{\frac{a}{2}}$)=${e}^{\frac{3}{4}}$-3,由于e3>16,因此${e}^{\frac{3}{4}}$>2,所以${e}^{\frac{3}{4}}$-3>-1;
当a=4时,h(${e}^{\frac{a}{2}}$)=e-4<-1,故满足条件的最大正整数为3.                                     
②令h(x)=f(x)-g(x)=$\sqrt{x}$-mlnx,则h′(x)=$\frac{1}{2\sqrt{x}}$-$\frac{m}{x}$=$\frac{\sqrt{x}-2m}{2x}$.
(1)若m≤$\frac{1}{2}$,则h′(x)≥0,从而h(x)在[1,e]上递增,又h(1)=1,h(e)=$\sqrt{e}$-m,所以$\sqrt{e}$-m=2,m=$\sqrt{e}$-2;
(ii)若m≥$\frac{\sqrt{e}}{2}$,则h′(x)≤0,从而h(x)在[1,e]上递减,又h(1)=1,h(e)=$\sqrt{e}$-m,所以$\sqrt{e}$-m=-2,m=$\sqrt{e}$-2;
(iii)若$\frac{1}{2}$<m<$\frac{\sqrt{e}}{2}$,则由h′(x)=0,可得x=4m2,列表
x1(1,4m2)4m2(4m2,e)e
h′(x)-0+
h(x)12m-mln(4m2)$\sqrt{e}$-m
因为$\sqrt{e}$-m<$\sqrt{e}$-$\frac{1}{2}$<2,所以2m-mln(4m2)=-2,
令u(m)=2m-mln(4m2)=m(2-ln4)-2mlnm
∴u′(m)=2-ln4-2-2lnm=-ln4-2lnm=-2 ln2m<0,
∴u(m)>u($\frac{\sqrt{e}}{2}$)=$\sqrt{e}$-$\frac{\sqrt{e}}{2}$=$\frac{\sqrt{e}}{2}$,故该情况不成立.
综上,m的取值范围是{$\sqrt{e}$-2,$\sqrt{e}$+2}.

点评 本题主要考查了对新定义的理解,利用导数判断函数的单调性应用以及构造新函数等知识点,属中等偏上题型.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.不等式x(x-1)<2的解集是(  )
A.{x|-2<x<1}B.{x|-1<x<2}C.{x|x>1或x<-2}D.{x|x>2或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.执行如图程序中,若输出y的值为1,则输入x的值为(  )
A.0B.1C.0或1D.-1,0或1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.一批材料可以建成100m长的围墙,现用这些材料在一边靠墙的地方围成一块封闭的矩形场地,中间隔成3个面积相等的小矩形(如图),则围成的矩形场地的最大总面积为(围墙厚度忽略不计)625m2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知0<α<β<π,且cosαcosβ=$\frac{1}{5}$,sinαsinβ=$\frac{2}{5}$,则tan(β-α)的值为$\frac{4}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.两个整数315和2016的最大公约数是(  )
A.38B.57C.63D.83

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.分别在两个平行平面内的两条直线间的位置关系不可能为②
①平行   ②相交   ③异面    ④垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|-1≤x≤10},集合B={x|2x-6≥0}.
求∁R(A∪B);
已知C={x|a<x<a+1},且C⊆A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图是某校高二年级举办的歌咏比赛上,五位评委为某选手打出的分数的茎叶统计图,去掉一个最高分和一个最低分后,所剩数据的方差为$\frac{2}{3}$.

查看答案和解析>>

同步练习册答案