精英家教网 > 高中数学 > 题目详情
13.不等式x(x-1)<2的解集是(  )
A.{x|-2<x<1}B.{x|-1<x<2}C.{x|x>1或x<-2}D.{x|x>2或x<-1}

分析 根据一元二次不等式的解法解不等式即可.

解答 解:∵x(x-1)<2,
∴x2-x-2<0,
即(x-2)(x+1)<0,
∴-1<x<2,
即不等式的解集为{x|-1<x<2}.
故选:B

点评 本题主要考查一元二次不等式的解法,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在△ABC中,角A、B、C所对的边分别是a,b,c,若A=60°,b=1,其面积为$\sqrt{3}$.则$\frac{a+b+c}{sinA+sinB+sinC}$的值为(  )
A.$3\sqrt{3}$B.$\frac{2}{3}\sqrt{39}$C.$\frac{{8\sqrt{3}}}{3}$D.$\frac{{\sqrt{39}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设a=($\frac{\sqrt{2}}{2}$)3,b=40.3,c=log40.3,则a,b,c的大小是(  )
A.a>b>cB.b>a>cC.c>a>bD.b>c>a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ax(0<a且a≠1)满足f(2)=81,则f(-$\frac{1}{2}$)=(  )
A.±1B.±3C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知数列{an}:$\frac{1}{2}$,$\frac{1}{3}$+$\frac{2}{3}$,$\frac{1}{4}$+$\frac{2}{4}$+$\frac{3}{4}$,…,$\frac{1}{10}$+$\frac{2}{10}$+$\frac{3}{10}$+…+$\frac{9}{10}$,…,若bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,那么数列{bn}的前n项和Sn为(  )
A.$\frac{n}{n+1}$B.$\frac{4n}{n+1}$C.$\frac{3n}{n+1}$D.$\frac{5n}{n+1}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设a>0,b>0,若$\sqrt{2}$是4a与2b的等比中项,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.2$\sqrt{2}$B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数列{an}满足a1=$\frac{1}{2}$,an+1=$\frac{1}{{1-{a_n}}}$(n∈N*),a2017=(  )
A.$\frac{1}{2}$B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在平行四边形ABCD中,BD=4$\sqrt{3}$,PD⊥平面ABCD,平面PBC⊥平面PBD,二面角P-BC-D为60°
(1)求证:BC⊥BD;
(2)求点A到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.对于两个定义域均为D的函数f(x),g(x),若存在最小正实数M,使得对于任意x∈D,都有|f(x)-g(x)|≤M,则称M为函数f(x),g(x)的“差距”,并记作||f(x),g(x)||.
(1)求f(x)=sinx(x∈R),g(x)=cosx(x∈R)的差距;
(2)设f(x)=$\sqrt{x}$(x∈[1,e${\;}^{\frac{a}{2}}$]),g(x)=mlnx(x∈[1,e${\;}^{\frac{a}{2}}$]).(e≈2.718)
①若m=2,且||f(x),g(x)||=1,求满足条件的最大正整数a;
②若a=2,且||f(x),g(x)||=2,求实数m的取值范围.

查看答案和解析>>

同步练习册答案