精英家教网 > 高中数学 > 题目详情
3.在△ABC中,角A、B、C所对的边分别是a,b,c,若A=60°,b=1,其面积为$\sqrt{3}$.则$\frac{a+b+c}{sinA+sinB+sinC}$的值为(  )
A.$3\sqrt{3}$B.$\frac{2}{3}\sqrt{39}$C.$\frac{{8\sqrt{3}}}{3}$D.$\frac{{\sqrt{39}}}{2}$

分析 由已知利用三角形面积公式可求c的值,进而利用余弦定理可求a,利用正弦定理及比例的性质即可计算得解.

解答 解:∵A=60°,b=1,其面积为$\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}×1×c×\frac{\sqrt{3}}{2}$,可得:c=4,
∴a=$\sqrt{{b}^{2}+{c}^{2}-2bccosA}$=$\sqrt{1+16-2×1×4×\frac{1}{2}}$=$\sqrt{13}$,
∴$\frac{a+b+c}{sinA+sinB+sinC}$=$\frac{a}{sinA}=\frac{\sqrt{13}}{\frac{\sqrt{3}}{2}}$=$\frac{2}{3}\sqrt{39}$.
故选:B.

点评 本题主要考查了三角形面积公式,余弦定理,正弦定理及比例的性质在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.在△ABC中,a,b,c分别是角A,B,C所对的边;
(1)、证明余弦定理:a2=b2+c2-2bccosA;
(2)、在ABC中2a2-bc=2(bccosA+cacosB+abcosC),求A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}是公差不为0的等差数列,a1+1,a2+1,a4+1成等比数列,且a2+a3=-12,则an=-2n-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某超市去年的销售额为a万元,计划在今后10年内每年比上一年增长10%,从今年起10年内这家超市的总销售额为(  )万元.
A.1.19aB.1.15aC.10a(1.110-1)D.11a(1.110-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知a>0,集合A={x|ax2-2x+2a-1=0},B={y|y=log2(x+$\frac{a}{x}$-4)},p:A=∅,q:B=R.
(1)若p∧q为真,求a的最大值;
(2)若p∧q为为假,p∨q为真,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则a2016=3×42014

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若数列{an}的通项公式an=$\frac{2}{{n({n+1})}}$,则其前n项和Sn等于(  )
A.$\frac{n}{n+1}$B.$\frac{2n}{n+1}$C.$\frac{n+1}{n+2}$D.$\frac{2n}{n+2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在△ABC中,角A,B,C的对边分别为a,b,c,已知bcosC+$\sqrt{3}$bsinC-a-c=0,则角B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式x(x-1)<2的解集是(  )
A.{x|-2<x<1}B.{x|-1<x<2}C.{x|x>1或x<-2}D.{x|x>2或x<-1}

查看答案和解析>>

同步练习册答案